Background: the use of combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) for the functional evaluation of the cerebral cortex in health and disease is becoming increasingly common. However, there is still some ambiguity regarding the extent to which brain responses to auditory and somatosensory stimulation contribute to the TMS-evoked potential (TEP). Objective/Hypothesis: to measure separately the contribution of auditory and somatosensory stimulation caused by TMS, and to assess their contribution to the TEP waveform, when stimulating the motor cortex (M1). Methods: 19 healthy volunteers underwent 7 blocks of EEG recording. To assess the impact of auditory stimulation on the TEP waveform, we used a standard figure of eight coil, with or without masking with a continuous noise reproducing the specific time-varying frequencies of the TMS click, stimulating at 90% of resting motor threshold. To further characterise auditory responses due to the TMS click, we used either a standard or a sham figure of eight coil placed on a pasteboard cylinder that rested on the scalp, with or without masking. Lastly, we used electrical stimulation of the scalp to investigate the possible contribution of somatosensory activation. Results: auditory stimulation induced a known pattern of responses in electrodes located around the vertex, which could be suppressed by appropriate noise masking. Electrical stimulation of the scalp alone only induced similar, non-specific scalp responses in the in the central electrodes. TMS, coupled with appropriate masking of sensory input, resulted in specific, lateralized responses at the stimulation site, lasting around 300 ms. Conclusions: if careful control of confounding sources is applied, TMS over M1 can generate genuine, lateralized EEG activity. By contrast, sensory evoked responses, if present, are represented by nonspecific, late (100e200 ms) components, located at the vertex, possibly due to saliency of the stimuli. Notably, the latter can confound the TEP if masking procedures are not properly used.
BackgroundThe somatosensory temporal discrimination threshold (STDT) measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols.Methodology/Principal FindingsTo investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS) on the right primary somatosensory area (S1), pre-supplementary motor area (pre-SMA), right dorsolateral prefrontal cortex (DLPFC) and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS) on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli.Conclusions/SignificanceOur findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease.
Objective: high frequency repetitive somatosensory stimulation (HF-RSS), which is a patterned electric stimulation applied to the skin through surface electrodes, improves two-point discrimination, somatosensory temporal discrimination threshold (STDT) and motor performance in humans.However, the mechanisms which underlie this changes are still unknown. In particular, we hypothesize that refinement of inhibition might be responsible for the improvement in spatial and temporal perception. Methods: fifteen healthy subjects underwent 45 minutes of HF-RSS. Before and after the intervention several measures of inhibition in the primary somatosensory area (S1), such as paired-pulse somatosensory evoked potentials (pp-SEP), high-frequency oscillations (HFO), and STDT were tested, as well as tactile spatial acuity and short intracortical inhibition (SICI). Results:HF-RSS increased inhibition in S1 tested by pp-SEP and HFO; these changes were correlated with improvement in STDT. HF-RSS also enhanced bumps detection, while there was no change in grating orientation test. Finally there was an increase in SICI, suggesting widespread changes in cortical sensorimotor interactions. Conclusions: these findings suggest that HF-RSS can improve spatial and temporal tactile abilities by increasing the effectiveness of inhibitory interactions in the somatosensory system. Moreover, HF-RSS induces changes in cortical sensorimotor interaction.Significance: HF-RSS is a repetitive electric stimulation technique able to modify the effectiveness of inhibitory circuitry in the somatosensory system and primary motor cortex. 4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.