Recombinant coagulation factor Xa (FXa), inactivated Zh-zo, also known as andexanet alfa (AA), is a modified version of human FXa that has been developed to neutralize FXa inhibitors. We studied the reversal effect of AA for these inhibitors in various anticoagulant and thrombin generation (TG) assays. Individual aliquots of normal human plasma containing 1 µg/mL of apixaban, betrixaban, edoxaban, and rivaroxaban, were supplemented with saline or AA at a concentration of 100 µg/mL. Clotting profiles include prothrombinase-induced clotting time, activated partial thromboplastin time, and prothrombin time. Factor Xa activity was measured using an amidolytic method. Thrombin generation was measured using a calibrated automated thrombogram. Differential neutralization of all 4 anticoagulants was noted in the activated clotting time and other clotting tests. The FXa activity reversal profile varied with an observed decrease in apixaban (22%), betrixaban (56%), edoxaban (28%), and rivaroxaban (49%). Andexanet alfa also led to an increased TG in comparison to saline. The peak thrombin was higher (40%), area under the curve (AUC) increased (15%), whereas the lag time (LT) decreased (17%). Andexanet alfa added at 100 µg/mL to various FXa supplemented systems resulted in reversal of the inhibitory effects, restoring the TG profile; AUC, LT, and peak thrombin levels were comparable to those of unsupplemented samples. Andexanet alfa is capable of reversing anti-Xa activity of different oral FXa inhibitors but overshoots thrombogenesis in both the saline and FXa inhibitor supplemented systems. The degree of neutralization of Xa inhibitor is specific to each agent.
Introduction: There are four oral anti-Xa drugs currently available for clinical use in various indications. These drugs are claimed to mediate their therapeutic effects by solely targeting factor Xa. While these agents are structurally similar, their biochemical properties and their effects on blood coagulation differ. Such differences may impact their safety and efficacy profile. The purpose of this study was to demonstrate the differences among factor Xa inhibitors in terms of their in vitro anticoagulant activity and other biochemical effects. Materials and Methods: Commercially obtained powdered forms of Apixaban, Betrixaban, Edoxaban and Rivaroxaban were profiled in this study. Stock solutions of each drug were prepared at 1mg/ml. To investigate the effect on the whole blood clotting profile, thromboelastographic studies were carried out over a concentration range of 0.5 - 2.5 ug/ml and whole blood activated clotting time (ACT) was measured at 1.0 and 2.5 ug/ml. The anticoagulant profile in citrated human pool plasma was measured at concentrations of 0.062-1.0 ug/ml using such tests as prothrombin time (PT) and activated partial thromboplastin time (aPTT). The anti-Xa effects of each agent were measured using a kinetic amydolytic method. The inhibitory potency was calculated in terms of IC-50. Thrombin generation inhibition studies on each drug were carried out in human pool plasma in a concentration range of 0.0-1.0 ug/ml using calibrated aotomated thrombogram (CAT) assay (Diagnostica Stago, Paris, France). Fibrinokinetics studies were carried out using an optical kinetic method, where thrombin was used to trigger clot formation. All results were compiled in terms of mean + 1 SD of 3-5 replicates. Results: All of the anti-Xa agents produced concentration and assay-dependent effects in these studies. The summary of each agent's effects at selected fixed concentrations and the IC-50 of the anti-Xa activity is given in the Table. In the whole blood ACT at 2.5ug/ml, Edoxaban showed the strongest anti-coagulant effects followed by Rivaroxaban > Betrixaban, whereas Apixaban showed minimal effects. In the TEG analysis at 1ug/ml, Edoxaban exhibited stronger anti-coagulant effects as measured by various TEG parameters, including R-time, K-time, alpha, and MA. Edoxaban and Rivaroxaban showed comparable effects followed by Betrixaban, whereas Apixaban exhibited weaker effects. In the PT assay at 1ug/ml, Edoxaban showed stronger effects, whereas Apixaban, Betrixaban and Rivaroxaban were comparable. aPTT at 1ug/ml revealed that Edoxaban was the strongest anti-Xa inhibitor followed by Betrixaban, whereas Apixaban and Rivaroxaban were comparable. In the anti-Xa assay Edoxaban was stronger (IC-50 = 340ng/ml, 0.62uM) than Apixaban (IC-50 =400ng, 0.87uM), Rivaroxaban (IC-50 = 840ng, 1.9uM) and Betrixaban (IC = >1000ng, >2.22 uM). In the thrombin generation assays at 1ug/ml, Apixaban showed the strongest inhibitory activity (IC-50 = 50ng/ml, 108nm) followed by Edoxaban (IC-50 = 58ng/ml, 108nm), Betrixaban (IC-50 = 60ngml, 133nm) while Rivaroxaban showed relatively weaker activity (IC-50 = 100ng/ml, 299nm). In the fibrinokinetics study at 1ug/ml, the anti-Xa agents produced varying degrees of inhibition with Rivaroxaban (67%), Edoxaban (42%), Apixaban (32%) and Betrixaban (12%). Summary and Conclusion: These results demonstrate that the measured anti-Xa activity alone does not fully reflect the overall biologic spectrum of these agents. Assay dependent variations are exhibited by each of these drugs, revealing distinct individual profiles. Edoxaban was the only anti-Xa agent which consistently exhibited relatively stronger inhibitory profile which was proportional to its anti-Xa activity. These studies indicate that the oral anti-Xa drugs may modulate the hemostatic system through additional mechanisms independent of the inhibition of factor Xa. Table. Table. Disclosures No relevant conflicts of interest to declare.
Recent advances in ultrasonography (US) technology established modalities, such as Doppler-US, HistoScanning, contrast-enhanced ultrasonography (CEUS), elastography, and micro-ultrasound. The early results of these US modalities have been promising, although there are limitations including the need for specialized equipment, inconsistent results, lack of standardizations, and external validation. In this review, we identified studies evaluating multiparametric ultrasonography (mpUS), the combination of multiple US modalities, for prostate cancer (PCa) diagnosis. In the past 5 years, a growing number of studies have shown that use of mpUS resulted in high PCa and clinically significant prostate cancer (CSPCa) detection performance using radical prostatectomy histology as the reference standard. Recent studies have demonstrated the role mpUS in improving detection of CSPCa and guidance for prostate biopsy and therapy. Furthermore, some aspects including lower costs, real-time imaging, applicability for some patients who have contraindication for magnetic resonance imaging (MRI) and availability in the office setting are clear advantages of mpUS. Interobserver agreement of mpUS was overall low; however, this limitation can be improved using standardized and objective evaluation systems such as the machine learning model. Whether mpUS outperforms MRI is unclear. Multicenter randomized controlled trials directly comparing mpUS and multiparametric MRI are warranted.
Focal therapy (FT) has emerged as a potential treatment for localized prostate cancer (PCa) with encouraging functional outcomes. According to the compelling evidence based on meta-analyses and recent trials, erectile function (EF) is mostly retained at 6 and 12 months after FT when compared to baseline. These findings are consistent across different energy sources reported to date. However, overall, quality of life, including impotence, was not the endpoint for most studies. Additionally, impotency has not been consistently reported in most of the recent literature. Furthermore, confounding factors such as baseline potency and usage of phosphodiesterase 5 inhibitors (PDE5-I) were also frequently undisclosed. Long-term functional outcomes are awaited. To fully comprehend how FT affects EF, more extensive long-term randomized clinical trials using EF as a primary outcome are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.