It has been shown that the longitudinal mode of a massive vector boson can be produced by inflationary fluctuations and account for the dark matter content of the Universe. In this work we examine the possibility of instead producing the transverse mode via the coupling φFF between the inflaton and the vector field strength. Such a coupling leads to a tachyonic instability and exponential production of one transverse polarization of the vector field, reaching its maximum near the end of inflation. At production the mass is negligible and the vectors add up coherently to form a dark electromagnetic field. As the Universe expands, the energy density of the dark electromagnetic field then redshifts like radiation until its wavelength stretches to beyond its Compton wavelength. After this point the vectors become non-relativistic and their energy density redshifts like matter. We show that these polarized transverse vectors can account for the observed dark matter relic density in the mass range µeV to hundreds of GeV. We also find that the tachyonic production mechanism of the transverse mode can accommodate larger vector masses and lower Hubble scales of inflation compared to the production mechanism for the longitudinal mode via inflationary fluctuations.
We consider the recently proposed cosmological relaxation mechanism where the hierarchy problem is ameliorated, and the electroweak (EW) scale is dynamically selected by a slowly rolling axion field. We argue that, in its simplest form, the construction breaks a gauge symmetry that always exists for pseudo-Nambu-Goldstone bosons (in particular the axion). The small parameter in the relaxion model is therefore not technically natural as it breaks a gauge symmetry rather than global symmetries only. The consistency of the theory generically implies that the cutoff must lie around the electroweak scale, but not qualitatively higher. We discuss several ways to evade the above conclusion. Some of them may be sufficient to increase the cutoff to the few-TeV range (and therefore may be relevant for the little-hierarchy problem). To demonstrate the ideas in a concrete setting we consider a model with a familon, the Nambu-Goldstone boson of a spontaneously broken chiral flavor symmetry. The model has some interesting collider-physics aspects and contains a viable weakly interacting dark matter candidate.
Abstract:We study the implications of the Higgs discovery and of recent results from dark matter searches on real singlet scalar dark matter. The phenomenology of the model is defined by only two parameters, the singlet scalar mass m S and the quartic coupling a 2 between the SU(2) Higgs and the singlet scalar. We concentrate on the window 5 < m S /GeV < 300. The most dramatic impact on the viable parameter space of the model comes from direct dark matter searches with LUX, and, for very low masses in the few GeV range, from constraints from the invisible decay width of the Higgs. In the resonant region the best constraints come from gamma-ray line searches. We show that they leave only a small region of viable parameter space, for dark matter masses within a few percent of half the mass of the Higgs. We demonstrate that direct and indirect dark matter searches (especially the search for monochromatic gamma-ray lines) will play a key role in closing the residual parameter space in the near future.
Theories with dark forces and dark sectors are of interest for dark matter models. In this paper we find the region in parameter space that is constrained by supernova cooling constraints when the models include dark sector particles with masses around 100 MeV or less. We include only interactions with electrons and positrons. The constraint is important for small mixing parameters. We do not include in this work interactions with nucleons, which could give other important constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.