Most video analytics applications rely on object detectors to localize objects in frames. However, when real-time is a requirement, running the detector at all the frames is usually not possible. This is somewhat circumvented by instantiating visual object trackers between detector calls, but this does not scale with the number of objects. To tackle this problem, we present SiamMT, a new deep learning multiple visual object tracking solution that applies single-object tracking principles to multiple arbitrary objects in realtime. To achieve this, SiamMT reuses feature computations, implements a novel crop-and-resize operator, and defines a new and efficient pairwise similarity operator. SiamMT naturally scales up to several dozens of targets, reaching 25 fps with 122 simultaneous objects for VGA videos, or up to 100 simultaneous objects in HD720 video. SiamMT has been validated on five large real-time benchmarks, achieving leading performance against current state-of-the-art trackers.
Depth estimation and all-in-focus image restoration from defocused RGB images are related problems, although most of the existing methods address them separately. The few approaches that solve both problems use a pipeline processing to derive a depth or defocus map as an intermediary product that serves as a support for image deblurring, which remains the primary goal. In this paper, we propose a new Deep Neural Network (DNN) architecture that performs in parallel the tasks of depth estimation and image deblurring, by attaching them the same importance. Our Two-headed Depth Estimation and Deblurring Network (2HDED:NET) is an encoderdecoder network for Depth from Defocus (DFD) that is extended with a deblurring branch, sharing the same encoder. The network is tested on NYU-Depth V2 dataset and compared with several state-of-the-art methods for depth estimation and image deblurring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.