Purpose of Review Humanoid robots are versatile platforms with the potential to assist humans in several domains, from education to healthcare, from entertainment to the factory of the future. To find their place into our daily life, where complex interactions and collaborations with humans are expected, their social and physical interaction skills need to be further improved.
Recent FindingsThe hallmark of humanoids is their anthropomorphic shape, which facilitates the interaction but at the same time increases the expectations of the human in terms of advanced cooperation capabilities. Cooperation with humans requires an appropriate modeling and real-time estimation of the human state and intention. This information is required both at a high level by the cooperative decision-making policy and at a low level by the interaction controller that implements the physical interaction. Real-time constraints induce simplified models that limit the decision capabilities of the robot during cooperation.
SummaryIn this article, we review the current achievements in the context of human-humanoid interaction and cooperation. We report on the cognitive and cooperation skills that the robot needs to help humans achieve their goals, and how these high-level skills translate into the robot's low-level control commands. Finally, we report on the applications of humanoid robots as humans' companions, co-workers, or avatars.
Keywords Humanoid robots • Human-robot interaction • CooperationThis article is part of the Topical Collection on Humanoid and Bipedal Robotics
Improving the ergonomy of working environments is essential to reducing work-related musculo-skeletal disorders. We consider real-time ergonomic feedback a key technology for achieving such improvements. To this end, we present supportive tools for online evaluation and visualization of strenuous efforts and postures of a worker, also when physically interacting with a robot. A digital human model is used to estimate human kinematics and dynamics and visualize non-ergonomic joint angles, based on the on-line data acquired from a wearable motion tracking device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.