Lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium involves various extracellular oxidative enzymes, including lignin peroxidase, manganese peroxidase, and a peroxide-generating enzyme, glyoxal oxidase. Recent studies have suggested that laccases also may be produced by this fungus, but these conclusions have been controversial. We identified four sequences related to laccases and ferroxidases (Fet3) in a search of the publicly available P. chrysosporium database. One gene, designated mco1, has a typical eukaryotic secretion signal and is transcribed in defined media and in colonized wood. Structural analysis and multiple alignments identified residues common to laccase and Fet3 sequences. A recombinant MCO1 (rMCO1) protein expressed in Aspergillus nidulans had a molecular mass of 78 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the copper I-type center was confirmed by the UVvisible spectrum. rMCO1 oxidized various compounds, including 2,2-azino(bis-3-ethylbenzthiazoline-6-sulfonate) (ABTS) and aromatic amines, although phenolic compounds were poor substrates. The best substrate was Fe 2؉ , with a K m close to 2 M. Collectively, these results suggest that the P. chrysosporium genome does not encode a typical laccase but rather encodes a unique extracellular multicopper oxidase with strong ferroxidase activity.
The w hi te-ro t basidi om ycete Ceriporiopsis sub vermispora produces two families of ligninolytic enzymes, namely manganese-dependent peroxidases (MnPs) and laccases, when growing in liquid cultures of defined composition. In medium containing 11 p.p.m. of Mn(lI), up to seven isoenzymes of MnP and four isoenzymes of laccase were resolved by isoelectrofocusing (IEF), with pl values in the range 4 4 0 4 6 0 and 3.45-3.65, respectively. Occasionally, a fifth laccase isoform of p l 4 7 0 was also detected. In cultures with 25 and 40 p.p.m. of Mn(ll), mainly the MnPs with higher pl values are produced. The isoenzyme pattern of MnP is not altered throughout the growth period of the fungus. MnP and laccase are also produced by C. subvermispora when growing on wood chips of Pinus radiata. Highest levels of both enzymes were obtained during the first week of incubation. A second peak of MnP activity was observed during the fourth week, whereas very low levels of laccase were extracted from the chips after the second week of growth, IEF analysis showed that the pl values of these laccases are similar to those of laccases produced in liquid cultures, being in the range 3-45-3065. In contrast, four isoforms of MnP were resolved during the first week of incubation on wood chips, with pl values of 440,4*17,4*04 and 3.53. This profile underwent a transition during the second week of growth, a t the end of which isoforms of MnP with pl values of 3*53,340,3-30 and 3.20 were resolved b y IEF. lmmunoblotting studies showed that the molecular mass of MnP isoenzymes from liquid cultures was about 52.5 kDa, whereas the molecular masses of MnPs extracted from wood varied from 52-5 kDa to 62.5 kDa upon ageing of the cultures. The amino terminal sequences of seven MnP isoenzymes were determined. The consensus sequences of MnPs from liquid and solid cultures were clearly distinct, although both showed homology to MnPs from related white-rot fungi.
The Atacama Desert is one of the driest places on Earth, with an arid core highly adverse to the development of hypolithic cyanobacteria. Previous work has shown that when rain levels fall below ~1 mm per year, colonization of suitable quartz stones falls to virtually zero. Here, we report that along the coast in these arid regions, complex associations of cyanobacteria, archaea, and heterotrophic bacteria inhabit the undersides of translucent quartz stones. Colonization rates in these areas, which receive virtually no rain but mainly fog, are significantly higher than those reported inland in the hyperarid zone at the same latitude. Here, hypolithic colonization rates can be up to 80%, with all quartz rocks over 20 g being colonized. This finding strongly suggests that hypolithic microbial communities thriving in the seaward face of the Coastal Range can survive with fog as the main regular source of moisture. A model is advanced where the development of the hypolithic communities under quartz stones relies on a positive feedback between fog availability and the higher thermal conductivity of the quartz rocks, which results in lower daytime temperatures at the quartz-soil interface microenvironment.
Martian surface microbial inhabitants would be challenged by a constant and unimpeded flux of UV radiation, and the study of analog model terrestrial environments may be of help to understand how such life forms could survive under this stressful condition. One of these environments is the Atacama Desert (Chile), a well-known Mars analog due to its extreme dryness and intense solar UV radiation. Here, we report the microbial diversity at five locations across this desert and the isolation of UVC-tolerant microbial strains found in these sites. Denaturing gradient gel electrophoresis (DGGE) of 16S rDNA sequences obtained from these sites showed banding patterns that suggest distinct and complex microbial communities. Analysis of 16S rDNA sequences obtained from UV-tolerant strains isolated from these sites revealed species related to the Bacillus and Pseudomonas genera. Vegetative cells of one of these isolates, Bacillus S3.300-2, showed the highest UV tolerance profile (LD(10) = 318 J m(2)), tenfold higher than a wild-type strain of Escherichia coli. Thus, our results show that the Atacama Desert harbors a noteworthy microbial community that may be considered for future astrobiological-related research in terms of UV tolerance.
The comprehensive study of microorganisms that evolved in the Atacama Desert, the driest and oldest on earth, may help to understand the key role of water for life. In this context, we previously characterized the microenvironment that allows colonization of the underside of quartzes in the Coastal Range of this desert by hypolithic microorganisms (Azua-Bustos et al. Microb Ecol 58:568-581, 2011). Now, we describe the biodiversity composition of these biofilms and the isolation from it of a new cyanobacterial strain. Based on morphologic and phylogenetic analyses, this isolate (AAB1) was classified as a new member of the Gloeocapsopsis genus. Physiological, morphological and molecular responses by isolate AAB1 show that this strain is extremely tolerant to desiccation. Our results also indicate that the isolate biosynthesizes sucrose and trehalose in response to this stressful condition. We identified two candidate genes involved in sucrose synthesis, namely sucrose 6-phosphate synthase and sucrose 6-phosphate phosphatase. Thus, the Gloeocapsopsis isolate AAB1 may represent a suitable model for understanding tolerance to low water availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.