Human-robot collaboration is a key factor for the development of factories of the future, a space in which humans and robots can work and carry out tasks together. Safety is one of the most critical aspects in this collaborative human-robot paradigm. This article describes the experiments done and results achieved by the authors in the context of the Four-ByThree project, aiming to measure the trust of workers on fenceless human-robot collaboration in industrial robotic applications as well as to gauge the acceptance of different interaction mechanisms between robots and human beings.
This article presents a semantic approach for multimodal interaction between humans and industrial robots to enhance the dependability and naturalness of the collaboration between them in real industrial settings. The fusion of several interaction mechanisms is particularly relevant in industrial applications in which adverse environmental conditions might affect the performance of vision-based interaction (e.g. poor or changing lighting) or voice-based interaction (e.g. environmental noise). Our approach relies on the recognition of speech and gestures for the processing of requests, dealing with information that can potentially be contradictory or complementary. For disambiguation, it uses semantic technologies that describe the robot characteristics and capabilities as well as the context of the scenario. Although the proposed approach is generic and applicable in different scenarios, this article explains in detail how it has been implemented in two real industrial cases in which a robot and a worker collaborate in assembly and deburring operations.
Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity. This paper presents the development and comparison of two different approaches for vision based automated pest detection and identification, using learning strategies. A solution that combines computer vision and machine learning is compared against a deep learning solution. The main focus of our work is on the selection of the best approach based on pest detection and identification accuracy. The inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate machine learning and deep learning models. The results showed that the deep learning technique provides a better solution because (a) it achieves the disease detection and classification in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing different models.
Programming robots to perform complex tasks is a very expensive job. Traditional path planning and control are able to generate point to point collision free trajectories, but when the tasks to be performed are complex, traditional planning and control become complex tasks. This study focused on robotic operations in logistics, specifically, on picking objects in unstructured areas using a mobile manipulator configuration. The mobile manipulator has to be able to place its base in a correct place so the arm is able to plan a trajectory up to an object in a table. A deep reinforcement learning (DRL) approach was selected to solve this type of complex control tasks. Using the arm planner’s feedback, a controller for the robot base is learned, which guides the platform to such a place where the arm is able to plan a trajectory up to the object. In addition the performance of two DRL algorithms ((Deep Deterministic Policy Gradient (DDPG)) and (Proximal Policy Optimisation (PPO)) is compared within the context of a concrete robotic task.
Detecting and tracking people is a key capability for robots that operate in populated environments. In this paper, we used a multiple sensor fusion approach that combines three kinds of sensors in order to detect people using RGB-D vision, lasers and a thermal sensor mounted on a mobile platform. The Kinect sensor offers a rich data set at a significantly low cost, however, there are some limitations to its use in a mobile platform, mainly that the Kinect algorithms for people detection rely on images captured by a static camera. To cope with these limitations, this work is based on the combination of the Kinect and a Hokuyo laser and a thermopile array sensor. A real-time particle filter system merges the information provided by the sensors and calculates the position of the target, using probabilistic leg and thermal patterns, image features and optical flow to this end. Experimental results carried out with a mobile platform in a Science museum have shown that the combination of different sensory cues increases the reliability of the people following system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.