We describe a procedure for isolating agonists for mammalian G protein-coupled receptors of unknown function. Human formyl peptide receptor like-1 (FPRL-1) receptor, originally identified as an orphan G protein-coupled receptor related to the formyl peptide receptor (FPR1), was expressed in Saccharomyces cells designed to couple receptor activation to histidine prototrophy. Selection for histidine prototrophs among transformants obtained with a plasmid-based library encoding random peptides identified six different agonists, each of whose production yielded autocrine stimulation of the receptor expressed in yeast. A synthetic version of each peptide promoted activation of FPRL-1 expressed in human embryonic kidney (HEK293) cells, and five of the peptides exhibited significant selectivity for activation of FPRL-1 relative to FPR1. One selective peptide was tested and found to mobilize calcium in isolated human neutrophils. This demonstrates that stimulation of FPRL-1 results in neutrophil activation and suggests that the receptor functions as a component of the inflammatory response. This autocrine selection protocol may be a generally applicable method for providing pharmacological tools to evaluate the physiological roles of the growing number of mammalian orphan G protein-coupled receptors.
The molybdopterin cofactor (MoCF) is required for the activity of a variety of oxidoreductases. The xanthine oxidase class of molybdoenzymes requires the MoCF to have a terminal, cyanolysable sulphur ligand. In the sulphite oxidase/nitrate reductase class, an oxygen is present in the same position. Mutations in both the ma‐l gene of Drosophila melanogaster and the hxB gene of Aspergillus nidulans result in loss of activities of all molybdoenzymes that necessitate a cyanolysable sulphur in the active centre. The ma‐l and hxB genes encode highly similar proteins containing domains common to pyridoxal phosphate‐dependent cysteine transulphurases, including the cofactor binding site and a conserved cysteine, which is the putative sulphur donor. Key similarities were found with NifS, the enzyme involved in the generation of the iron–sulphur centres in nitrogenase. These similarities suggest an analogous mechanism for the generation of the terminal molybdenum‐bound sulphur ligand. We have identified putative homologues of these genes in a variety of organisms, including humans. The human homologue is located in chromosome 18.q12.
Defective mismatch repair has recently been implicated as the major contributor towards the mutator phenotype observed in tumour cell lines derived from patients diagnosed with hereditary non-polyposis colon cancer (HNPCC). Cell lines from other cancer-prone syndromes, such as xeroderma pigmentosum, have been found to be defective in nucleotide excision repair of damaged bases. Some genetic complementation groups are defective specifically in transcription-coupled excision repair, although this type of repair defect has not been associated with cancer proneness. Mechanisms contributing to the high incidence of activating point mutations in oncogenes (such as H-ras codon 12) are not understood. It is possible that novel mechanisms of misrepair or misreplication occur at these sites in addition to the above DNA repair mechanisms. In this study, we have compared the rate of strand-directed mismatch repair of four mispairs (G:A, A:C, T:C and G:T) at the H-ras codon 12, middle G:C position. Our results indicate that, although this location is not a 'hot spot' for bacterial mismatch repair, it is a 'hot spot' for decreased repair of specific mismatched bases within NIH 3T3 cells. NIH 3T3, unlike Escherichia coli, have an extremely low repair rate of the G:A mispair (35%), as well as the A:C mispair (58%) at this location. NIH 3T3 also have a moderately low repair rate of the T:C mispair (80%) at the codon 12 location. Conversely, NIH 3T3 repair of G:T (100%) is comparable to E. coli repair (94%) of this mismatch. These results demonstrate that a mismatch containing an incorrect adenine on either strand at the H-ras codon 12 middle base pair location is most likely to undergo a mutational event in NIH 3T3 cells. Conversely, a mismatch containing an incorrect thymine in the transcribed strand is least likely to undergo a mutational event.
The human genomic H-ras proto-oncogene was inserted into an Epstein-Barr virus (EBV) vector (p220.2) that replicates synchronously with the cell cycle. Unique restriction enzyme sites, 30 bp apart, were created on either side of codon 12 to enable the construction of gapped heteroduplex (GHD) DNA. Depending upon experimental protocol, the gap could be located either on the coding (non-transcribed) strand or the non-coding (transcribed) strand. GHD DNA was created using a 1.8 kb segment of H-ras DNA containing exon 1, into which a synthetic 30 nucleotide oligomer containing a strand-and site-specific mismatched nucleotide was annealed. The 1.8 kb segment of H-ras DNA containing a codon 12; middle G:T, A:C or T:C mismatch has been religated with high efficiency into the EBV vector and transfected into NIH 3T3 cells using a mild liposome-mediated protocol. Subsequent hygromycin resistant NIH 3T3 colonies have been PCR amplified and sequenced. In this study, codon 12; middle nucleotide mismatch correction rates to wild-type G:C during replication in NIH 3T3 cells were 96.4% of G:T mismatches, 87.5% of A:C mismatches and 67% of T:C mismatches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.