Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Caspases play an essential role in the execution of programmed cell death in metazoans. Although 14 caspases are known in mammals, only a few have been described in other organisms. Here we describe the identification and characterization of a Drosophila caspase, DRONC, that contains an amino terminal caspase recruitment domain. Ectopic expression of DRONC in cultured cells resulted in apoptosis, which was inhibited by the caspase inhibitors p35 and MIHA. DRONC exhibited a substrate specificity similar to mammalian caspase-2. DRONC is ubiquitously expressed in Drosophila embryos during early stages of development. In late third instar larvae, dronc mRNA is dramatically upregulated in salivary glands and midgut before histolysis of these tissues. Exposure of salivary glands and midgut isolated from second instar larvae to ecdysone resulted in a massive increase in dronc mRNA levels. These results suggest that DRONC is an effector of steroid-mediated apoptosis during insect metamorphosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.