Unlike normal chemical bonds, hydrogen bonds (H-bonds) characteristically feature binding energies and contact distances that do not simply depend on the donor (D) and acceptor (:A) nature. Instead, their chemical context can lead to large variations even for a same donor-acceptor couple. As a striking example, the weak HO-H...OH(2) bond in neutral water changes, in acidic or basic medium, to the 6-fold stronger and 15% shorter [H(2)O...H...OH(2)](+) or [HO...H...OH](-) bonds. This surprising behavior, sometimes called the H-bond puzzle, practically prevents prediction of H-bond strengths from the properties of the interacting molecules. Explaining this puzzle has been the main research interest of our laboratory in the last 20 years. Our first contribution was the proposal of RAHB (resonance-assisted H-bond), a new type of strong H-bond where donor and acceptor are linked by a short pi-conjugated fragment. The RAHB discovery prompted new studies on strong H-bonds, finally leading to a general H-bond classification in six classes, called the six chemical leitmotifs, four of which include all known types of strong bonds. These studies attested to the covalent nature of the strong H-bond showing, by a formal valence-bond treatment, that weak H-bonds are basically electrostatic while stronger ones are mixtures of electrostatic and covalent contributions. The covalent component gradually increases as the difference of donor-acceptor proton affinities, DeltaPA, or acidic constants, DeltapK(a), approaches zero. At this limit, the strong and symmetrical D...H...A bonds formed can be viewed as true three-center-four-electron covalent bonds. These results emphasize the role PA/pK(a) equalization plays in strengthening the H-bond, a hypothesis often invoked in the past but never fully verified. In this Account, this hypothesis is reconsidered by using a new instrument, the pK(a) slide rule, a bar chart that reports in separate scales the pK(a)'s of the D-H proton donors and :A proton acceptors most frequently involved in D-H...:A bond formation. Allowing the two scales to shift so to bring selected donor and acceptor molecules into coincidence, the ruler permits graphical evaluation of DeltapK(a) and then empirical appreciation of the D-H...:A bond strength according to the pK(a) equalization principle. Reliability of pK(a) slide rule predictions has been verified by extensive comparison with two classical sources of H-bond strengths: (i) the gas-phase dissociation enthalpies of charged [X...H...X](-) and [X...H...X](+) bonds derived from the thermodynamic NIST Database and (ii) the geometries of more than 9500 H-bonds retrieved from the Cambridge Structural Database. The results attest that the pK(a) slide rule provides a reliable solution for the long-standing problem of H-bond-strength prediction and represents an efficient and practical tool for making such predictions directly accessible to all scientists.
Beta-diketone enols are known to form intramolecular...O=C-C=C-OH... resonance-assisted hydrogen bonds (RAHBs) with O...O distances as short as 2.39-2.44 A. However, even the most accurate diffraction studies have not been able to assess with certainty whether these very strong hydrogen bonds (H-bonds) are to be described as proton-centered O...H...O bonds in a single-well (SW) potential or as the dynamic or static mixing of two O-H...O <= => O...H-O tautomers in a double-well (DW) one. This contribution reexamines the problem and shows that diffraction methods are fairly able to assess the SW or DW nature of the H-bond formed and, in the second case, its dynamic or static nature, provided a Bayesian approach is used which associates a number of experimental techniques (X-ray crystallography at variable temperature, difference Fourier maps, least-squares refinement of proton populations, Hirshfeld's rigid-bond test) with a reasonable prior, that is the full set of possible proton-transfer (PT) pathways for the O-H...O system derived from theoretical calculations. The method is first applied to three beta-diketone enols, whose crystal structures were determined in the interval of temperatures 100-295 K and then generalized to the interpretation of a much wider set of beta-diketone enol structures derived from the literature, making it possible to establish a general relationship between chemical structure (symmetric or dissymmetric substitution, steric compression or stretching, increased pi-bond delocalizability), H-bond strength, and the shape of the PT-barrier. Final results are interpreted in terms of simplified VB theory and state-correlation (or avoided-crossing) diagrams.
The tautomeric.O=C-C=N-NH triplebond --> <-- HO-C=C-N=N triplebond ketohydrazone-azoenol system may form strong N-H triplebond O/O-H triplebond N intramolecular resonance-assisted H-bonds (RAHBs) which are sometimes of the low-barrier H-bond type (LBHB) with dynamic exchange of the proton in the solid state. The problem of the N-H triplebond O/O-H triplebond N competition in these compounds is studied here through variable-temperature (100, 150, 200, and 295 K) crystal-structure determination of pF = 1-(4-F-phenylazo)2-naphthol and oF = 1-(2-F-phenylazo)2-naphthol, two molecules that, on the ground of previous studies (Gilli, P; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405), were expected to represent an almost perfect balance of the two tautomers. According to predictions, the two molecules form remarkably strong bonds (d(N triplebond O) = 2.53-2.55 A) of double-minimum or LBHB type with dynamic N-H triplebond O/ O-H triplebond N exchange in the solid state. The enthalpy differences between the two minima, as measured by van't Hoff methods from the X-ray-determined proton populations, are very small and amount to DeltaH degrees = -0.120 and DeltaH degrees = -0.156 kcal mol(-)(1) in favor of the N-H triplebond O form for pF and oF, respectively. Successive emulation of pF by DFT methods at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d,p) level has shown that both energetic and geometric experimental aspects can be almost perfectly reproduced. Generalization of these results was sought by performing DFT calculations at the same level of theory along the complete proton-transfer (PT) pathway for five test molecules designed in such a way that the RAHB formed changes smoothly from weak N-H triplebond O to strong O-H.N through very strong N-H triplebond O/O-H triplebond N bond of LBHB type. A systematic correlation analysis of H-bond energies, H-bond and pi-conjugated fragment geometries, and H-bond Bader's AIM topological properties performed along the PT-pathways leads to the following conclusions: (a) any X-H triplebond Y H-bonded system is fully characterized by its intrinsic PT-barrier, that is, the symmetric barrier occurring when the proton affinities of X and Y are identical; (b) the intrinsic X-H triplebond Y bond associated with the symmetric barrier is the strongest possible bond in that system and will be single-minimum (single-well, no-barrier) or double-minimum (double-well, low-barrier) according to whether the intrinsic PT-barrier is lower or slightly higher than the zero-point vibrational level of the proton; (c) with reference to the intrinsic H-bond, the effect of chemical substitution can only be that of making more and more dissymmetric the PT-barrier, while the two H-bonds split in a higher-energy bond which is stronger because closer to the transition-state structure and in a lower-energy one (the stable form) which is weaker because farther from it; (d) complete dissymmetrization of the PT-barrier will increasingly weaken the more stable H-bond until the formation of an ex...
Phenyl-substituted 1-arylazo-2-naphthols (AAN) display ...HN-N=C-C=O... <==>...N=N-C=C-OH... ketohydrazone-azoenol tautomerism and can form intramolecular resonance-assisted H-bonds from pure N-H...O to pure N...H-O through tautomeric and dynamically disordered N-H...O <==>N...H-O bonds according to the electronic properties of their substituents. Three compounds of this series (m-OCH(3)-AAN = mOM; p-Cl-AAN = pCl; and p-NMe(2)-AAN = pNM2) have been studied by X-ray crystallography at four temperatures (100-295 K), showing that the remarkably short H-bonds formed (2.53 < or = d(N...O) < or = 2.55 A) are a pure N-H...O in mOM, a dynamically disordered mixture in pCl (N-H...O:N...H-O = 69:31 at 100 K), and a statically disordered mixture in pNM2 (N-H...O:N...H-O = 21:79 at 100 K). These compounds, integrated by the p-H-, p-NO(2)-, p-F-, and p-O(-)-substituted derivatives, have been emulated by DFT methods (B3LYP/6-31+G(d,p) level) with full geometry optimization of the stationary points along the proton-transfer (PT) pathway: N-H...O and N...H-O ground states and N...H...O transition state. Analysis of DFT-calculated energies and geometries by the methods of the rate-equilibrium Marcus theory shows that all H-bond features (stability and tautomerism, as well as position and height of the PT barrier) can be coherently interpreted in the frame of the transition-state (or activated-complex) theory by considering the bond as a chemical reaction N-H...O <==> N...H...O <==> N...H-O which is bimolecular in both directions and proceeds via the N...H...O PT transition state (the activated complex).
Theoretical chemistry Z 0350 Predicting Hydrogen-Bond Strengths from Acid-Base Molecular Properties. The pK a Slide Rule: Toward the Soution of a Long-Lasting Problem -[51 refs.]. -(GILLI, P.; PRETTO, L.; BERTOLASI, V.; GILLI*, G.; Acc. Chem. Res. 42 (2009) 1, 33-44; Dip. Chim., Univ. Ferrara, I-44100 Ferrara, Italy; Eng.) -Lindner 16-274
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.