Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a serine/threonine kinase that belongs to the DYRK family of proteins, a subgroup of the evolutionarily conserved CMGC protein kinase superfamily. Due to its localization on chromosome 21, the biological significance of DYRK1A was initially characterized in the pathogenesis of Down syndrome (DS) and related neurodegenerative diseases. However, increasing evidence has demonstrated a prominent role in cancer through its ability to regulate biologic processes including cell cycle progression, DNA damage repair, transcription, ubiquitination, tyrosine kinase activity, and cancer stem cell maintenance. DYRK1A has been identified as both an oncogene and tumor suppressor in different models, underscoring the importance of cellular context in its function. Here, we review mechanistic contributions of DYRK1A to cancer biology and its role as a potential therapeutic target.
Therapy-related myeloid neoplasms (t-MN) are a distinct subgroup of myeloid malignancies with a poor prognosis that include cases of therapy-related myelodysplastic syndrome (t-MDS), therapy-related myeloproliferative neoplasms (t-MPN) and therapy-related acute myeloid leukemia (t-AML). Here, we report a series of patients with clinical features consistent with juvenile myelomonocytic leukemia (JMML), an overlap syndrome of MDS and myeloproliferative neoplasms that developed after treatment for another malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.