Pan assay interference compounds (PAINS) are readily discovered in any bioassay and can appear to give selective and optimisable hits. The most common PAINS can be readily recognised by their structure. However, there are compounds that closely resemble PAINS that are not specifically recognised by the PAINS filters. In addition, highly reactive compounds are not encoded for in the PAINS filters because they were excluded from the high-throughput screening (HTS) library used to develop the filters and so were never present to provide indicting data. A compounding complication in the area is that very occasionally a PAINS compound may serve as a viable starting point for progression. Despite such an occasional example, the literature is littered with an overwhelming number of examples of compounds that fail to progress and were probably not optimisable in the first place, nor useful tool compounds. Thus it is with great caution and diligence that compounds possessing a known PAINS core should be progressed through to medicinal chemistry optimisation, if at all, as the chances are very high that the hits will be found to be non-progressable, often after a significant waste of resources.
The parasitic trypanosomes Trypanosoma brucei and T. cruzi are responsible for significant human suffering in the form of human African trypanosomiasis (HAT) and Chagas disease. Drugs currently available to treat these neglected diseases leave much to be desired. Herein we report optimization of a novel class of N-(2-(2-phenylthiazol-4-yl)ethyl)amides, carbamates, and ureas, which rapidly, selectively, and potently kill both species of trypanosome. The mode of action of these compounds is unknown but does not involve CYP51 inhibition. They do, however, exhibit clear structure-activity relationships, consistent across both trypanosome species. Favorable physicochemical parameters place the best compounds in CNS drug-like chemical space but, as a class, they exhibit poor metabolic stability. One of the best compounds (64a) cleared all signs of T. cruzi infection in mice when CYP metabolism was inhibited, with sterile cure achieved in one mouse. This family of compounds thus shows significant promise for trypanosomiasis drug discovery.
Herein we provide a living summary of the data generated during the COVID Moonshot project focused on the development of SARS-CoV-2 main protease (Mpro) inhibitors. Our approach uniquely combines crowdsourced medicinal chemistry insights with high throughput crystallography, exascale computational chemistry infrastructure for simulations, and machine learning in triaging designs and predicting synthetic routes. This manuscript describes our methodologies leading to both covalent and non-covalent inhibitors displaying protease IC50 values under 150 nM and viral inhibition under 5 uM in multiple different viral replication assays. Furthermore, we provide over 200 crystal structures of fragment-like and lead-like molecules in complex with the main protease. Over 1000 synthesized and ordered compounds are also reported with the corresponding activity in Mpro enzymatic assays using two different experimental setups. The data referenced in this document will be continually updated to reflect the current experimental progress of the COVID Moonshot project, and serves as a citable reference for ensuing publications. All of the generated data is open to other researchers who may find it of use.
Human African trypanosomiasis (HAT) has been neglected for a long time. The most recent drug to treat this disease, eflornithine, was approved by the US FDA in 2000. Current treatments exhibit numerous problematic side effects and are often ineffective against the debilitating CNS resident stage of the disease. Fortunately, several partnerships and initiatives have been formed over the last 20 years in an effort to eradicate HAT, along with a number of other neglected diseases. This has led to an increasing number of foundations and research institutions that are currently working on the development of new drugs for HAT and tools with which to diagnose and treat patients. New biochemical pathways as therapeutic targets are emerging, accompanied by increasing numbers of new antitrypanosomal compound classes. The future looks promising that this collaborative approach will facilitate eagerly awaited breakthroughs in the treatment of HAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.