While some members of the ubiquitous DExD/H box family of proteins have RNA helicase activity in vitro, their roles in vivo remain virtually unknown. Here, we show that the function of an otherwise essential DEAD box protein, Prp28p, can be bypassed by mutations that alter either the protein U1-C or the U1 small nuclear RNA. Further analysis suggests that the conserved L13 residue in the U1-C protein makes specific contact to stabilize the U1 snRNA/5' splice site duplex in the prespliceosome, and that Prp28p functions to counteract the stabilizing effect of the U1-C protein, thereby promoting the dissociation of the U1 small nuclear ribonucleoprotein particle from the 5' splice site. Thus, in addition to unwinding RNA, the DExD/H box proteins may affect RNA-RNA rearrangements by antagonizing specific RNA-stabilizing proteins.
We describe the rational design and synthesis of B- and A, B-ring-modified camptothecins. The key alpha-hydroxy-delta-lactone pharmacophore in 7-tert-butyldimethylsilyl-10-hydroxycamptothecin (DB-67, 14) displays superior stability in human blood when compared with clinically relevant camptothecin analogues. In human blood 14 displayed a t(1/2) of 130 min and a percent lactone at equilibrium value of 30%. The tert-butyldimethylsilyl group renders the new agent 25-times more lipophilic than camptothecin, and 14 is readily incorporated, as its active lactone form, into cellular and liposomal bilayers. In addition, the dual 7-alkylsilyl and 10-hydroxy substitution in 14 enhances drug stability in the presence of human serum albumin. Thus, the net lipophilicity and the altered human serum albumin interactions together function to promote the enhanced blood stability. In vitro cytotoxicity assays using multiple different cell lines derived from eight distinct tumor types indicate that 14 is of comparable potency to camptothecin and 10-hydroxycamptothecin, as well as the FDA-approved camptothecin analogues topotecan and CPT-11. In addition, cell-free cleavage assays reveal that 14 is highly active and forms more stable top1 cleavage complexes than camptothecin or SN-38. The impressive blood stability and cytotoxicity profiles for 14 strongly suggest that it is an excellent candidate for additional in vivo pharmacological and efficacy studies.
The yeast PRP28 g ene has been implicated in nuclear precursor messenger RNA (pre-mRNA) splicing, a two-step reaction involved in a multitude of RNA structural alterations. Prp28p, the gene product of PRP28 , is a member of the evolutionarily conserved DEAD-box proteins (DBPs). Members of DBPs are involved in a variety of RNA-related biochemical processes, presumably by their putative RNA helicase activities. Prp28p has been speculated to play a role in melting the duplex between U4 and U6 small nuclear RNAs (snRNAs), leading to the formation of an active spliceosome. To study the function of Prp28p and its interactions with other components of the splicing machinery, we have isolated and characterized a large number of prp28 conditional mutants. Strikingly, many of these prp28 mutations are localized in the highly conserved motifs found in all the DBPs. Intragenic reversion analysis suggests that regions of motifs II, III and V, as well as of motifs I and IV, in Prp28p are likely to be in close proximity to each other. Our results thus provide the first hint of the local structural arrangement for Prp28p, and perhaps for other DBPs as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.