As part of a broader trial of noninvasive methods to research wild wolves (Canis lupus) in Minnesota, USA, we explored whether wolves could be remotely monitored using a new, inexpensive, remotely deployable, noninvasive, passive acoustic recording device, the AudioMoth. We tested the efficacy of AudioMoths in detecting wolf howls and factors influencing detection by placing them at set distances from a captive wolf pack and compared those recordings with real-time, on-site howling data between 22 May and 17 June 2019. We identified 1,531 vocalizations grouped into 428 vocal events (236 solo howl series and 192 chorus howls). The on-site AudioMoth correctly recorded 100% of chorus and solo howls that were also documented in real-time. The remote array detected 49.5% of chorus and 11.9% of solo howls (≥1 unit detected the event). The closest remote AudioMoth (0.54 km, 0.33 mi) detected 37% of choruses and 8.9% of solo howls. Chorus howls (9.4%) were detected at the farthest unit (3.2 km, 2.0 mi). Favorable wind (carrying source howls to the remote units) and calm (no wind) conditions increased detectability and detection distance of chorus howls. Temperature was inversely related to detection. Given the detection distances we observed, AudioMoths are probably useful in studying specific sites during periods when wolves move less frequently (e.g., during late spring and summer at homesites or potentially during winter at kill sites of very large prey). AudioMoths would also be useful in a passive sampling array (e.g., occupancy studies), especially when used in concert with other methods such as camera-trapping. Additional research should be conducted in areas with different environmental variables (e.g., wind, temperature, habitat, topography) to determine performance under varying conditions and also when fitted with a parabolic dish.
Domestication dramatically changes behaviour, including communication, as seen in the case of dogs (Canis familiaris) and wolves (Canis lupus). We tested the hypothesis that domestication may affect an ancient, shared communication form of canids, the howling which seems to have higher individual variation in dogs: the perception and usage of howls may be affected by the genetic relatedness of the breeds to their last common ancestor with wolves (‘root distance’) and by other individual features like age, sex, and reproductive status. We exposed 68 purebred dogs to wolf howl playbacks and recorded their responses. We identified an interaction between root distance and age on the dogs’ vocal and behavioural responses: older dogs from more ancient breeds responded longer with howls and showed more stress behaviours. Our results suggest that domestication impacts vocal behaviour significantly: disintegrating howling, a central, species-specific communication form of canids and gradually eradicating it from dogs’ repertoire.
Mirror self-recognition (MSR) tests have been conducted in a variety of species to assess whether these animals exhibit self-awareness. To date, the majority of animals that have convincingly passed are highly social mammals whose wild counterparts live in complex societies, though there is much debate concerning what constitutes "passing" and what passing means in terms of self-awareness. Amid recent reports that a fish (cleaner wrasse, Labroides dimidiatus) passed, it is intriguing that a mammal as highly social, tolerant, attentive, and cooperative as the gray wolf (Canis lupus) has reportedly failed the test. Given the many possible reasons for failure, we were interested in reexamining wolves as a case study of MSR in socially complex mammals as part of a broader overview of the MSR test. We aimed to elucidate the wolves' responses at various stages of the MSR test to pinpoint potential problem areas where speciesspecific modifications to the test may be needed. We evaluated 6 socialized, captive gray wolves during July 2017. At a minimum, wolves did not respond to their reflection as an unfamiliar conspecific. Unfortunately, the wolves rapidly lost interest in the mirror and were uninterested in the applied marks. We note limitations of the MSR test for this species, recommend changes for future MSR tests of wolves, discuss other emerging self-cognizance methods for socially complex canids, and highlight the need for a suite of ecologically relevant, potentially scalable self-cognizance methods. Our findings and recommendations may aid in understanding selfcognizance in other MSR-untested, highly social, cooperatively-hunting, coursing, terrestrial carnivores such as African wild dogs (Lycaon pictus), spotted hyenas (Crocuta crocuta), and African lions (Panthera leo).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.