We study scattering by a high aspect ratio particle using boundary integral equation methods. This problem has important applications in nanophotonics problems, including sensing and plasmonic imaging. Specifically, we consider scattering in two dimensions by a sound-hard, high aspect ratio ellipse. For this problem, we find that the boundary integral operator is nearly singular due to the collapsing geometry from an ellipse to a line segment. We show that this nearly singular behavior leads to qualitatively different asymptotic behaviors for solutions with different parities. Without explicitly taking this nearly singular behavior and this parity into account, computed solutions incur a large error. To address these challenges,we introduce a new method called Quadrature by Parity Asymptotic eXpansions (QPAX) that effectively and efficiently addresses these issues. We first develop QPAX to solve the Dirichlet problem for Laplace's equation in a high aspect ratio ellipse. Then, we extend QPAX for scattering by a sound-hard, high aspect ratio ellipse. We demonstrate the effectiveness of QPAX through several numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.