The Pecorans (higher ruminants) are believed to have rapidly speciated in the Mid-Eocene, resulting in five distinct extant families: Antilocapridae, Giraffidae, Moschidae, Cervidae, and Bovidae. Due to the rapid radiation, the Pecoran phylogeny has proven difficult to resolve, and 11 of the 15 possible rooted phylogenies describing ancestral relationships among the Antilocapridae, Giraffidae, Cervidae, and Bovidae have each been argued as representations of the true phylogeny. Here we demonstrate that a genome-wide single nucleotide polymorphism (SNP) genotyping platform designed for one species can be used to genotype ancient DNA from an extinct species and DNA from species diverged up to 29 million years ago and that the produced genotypes can be used to resolve the phylogeny for this rapidly radiated infraorder. We used a high-throughput assay with 54,693 SNP loci developed for Bos taurus taurus to rapidly genotype 678 individuals representing 61 Pecoran species. We produced a highly resolved phylogeny for this diverse group based upon 40,843 genome-wide SNP, which is five times as many informative characters as have previously been analyzed. We also establish a method to amplify and screen genomic information from extinct species, and place Bison priscus within the Bovidae. The quality of genotype calls and the placement of samples within a wellsupported phylogeny may provide an important test for validating the fidelity and integrity of ancient samples. Finally, we constructed a phylogenomic network to accurately describe the relationships between 48 cattle breeds and facilitate inferences concerning the history of domestication and breed formation.ancient DNA ͉ Pecorans ͉ domestication
Landscape genetics has seen tremendous advances since its introduction, but parameterization and optimization of resistance surfaces still poses significant challenges. Despite increased availability and resolution of spatial data, few studies have integrated empirical data to directly represent ecological processes as genetic resistance surfaces. In our study, we determine the landscape and ecological factors affecting gene flow in the western slimy salamander (Plethodon albagula). We used field data to derive resistance surfaces representing salamander abundance and rate of water loss through combinations of canopy cover, topographic wetness, topographic position, solar exposure and distance from ravine. These ecologically explicit composite surfaces directly represent an ecological process or physiological limitation of our organism. Using generalized linear mixed-effects models, we optimized resistance surfaces using a nonlinear optimization algorithm to minimize model AIC. We found clear support for the resistance surface representing the rate of water loss experienced by adult salamanders in the summer. Resistance was lowest at intermediate levels of water loss and higher when the rate of water loss was predicted to be low or high. This pattern may arise from the compensatory movement behaviour of salamanders through suboptimal habitat, but also reflects the physiological limitations of salamanders and their sensitivity to extreme environmental conditions. Our study demonstrates that composite representations of ecologically explicit processes can provide novel insight and can better explain genetic differentiation than ecologically implicit landscape resistance surfaces. Additionally, our study underscores the fact that spatial estimates of habitat suitability or abundance may not serve as adequate proxies for describing gene flow, as predicted abundance was a poor predictor of genetic differentiation.
Recent genetic results support the recognition of two African elephant species: Loxodonta africana, the savannah elephant, and Loxodonta cyclotis, the forest elephant. The study, however, did not include the populations of West Africa, where the taxonomic affinities of elephants have been much debated. We examined mitochondrial cytochrome b control region sequences and four microsatellite loci to investigate the genetic differences between the forest and savannah elephants of West and Central Africa. We then combined our data with published control region sequences from across Africa to examine patterns at the continental level. Our analysis reveals several deeply divergent lineages that do not correspond with the currently recognized taxonomy: (i) the forest elephants of Central Africa; the forest and savannah elephants of West Africa; and (iii) the savannah elephants of eastern, southern and Central Africa. We propose that the complex phylogeographic patterns we detect in African elephants result from repeated continental-scale climatic changes over their five-to-six million year evolutionary history. Until there is consensus on the taxonomy, we suggest that the genetic and ecological distinctness of these lineages should be an important factor in conservation management planning.
Studies of species with continental distributions continue to identify intraspecific lineages despite continuous habitat. Lineages may form due to isolation by distance, adaptation, divergence across barriers, or genetic drift following range expansion. We investigated lineage diversification and admixture within American black bears (Ursus americanus) across their range using 22 k single nucleotide polymorphisms and mitochondrial DNA sequences. We identified three subcontinental nuclear clusters which we further divided into nine geographic regions: Alaskan (Alaska-East), eastern (Central Interior Highlands, Great Lakes, Northeast, Southeast), and western (Alaska-West, West, Pacific Coast, Southwest). We estimated that the western cluster diverged 67 ka, before eastern and Alaskan divergence 31 ka; these divergence dates contrasted with those from the mitochondrial genome where clades A and B diverged 1.07 Ma, and clades A-east and A-west diverged 169 ka. We combined estimates of divergence timing with hindcast species distribution models to infer glacial refugia for the species in Beringia, Pacific Northwest, Southwest, and Southeast. Our results show a complex arrangement of admixture due to expansion out of multiple refugia. The delineation of the genomic population clusters was inconsistent with the ranges for 16 previously described subspecies. Ranges for U. a. pugnax and U. a. cinnamomum were concordant with admixed clusters, calling into question how to order taxa below the species level. Additionally, our finding that U. a. floridanus has not diverged from U. a. americanus also suggests that morphology and genetics should be reanalyzed to assess taxonomic designations relevant to the conservation management of the species.
An isolated population of dark-eyed juncos, Junco hyemalis, became established on the campus of the University of California at San Diego (UCSD), probably in the early 1980s. It now numbers about 70 breeding pairs. Populations across the entire natural range of the subspecies J. h. thurberi are weakly differentiated from each other at five microsatellite loci (FST = 0.01). The UCSD population is significantly different from these populations, the closest of which is 70 km away. It has 88% of the genetic heterozygosity and 63% of the allelic richness of populations in the montane range of the subspecies, consistent with a harmonic mean effective population size of 32 (but with 95% confidence limits from four to > 70) over the eight generations since founding. Results suggest a moderate bottleneck in the early establishment phase but with more than seven effective founders. Individuals in the UCSD population have shorter wings and tails than those in the nearby mountains and a common garden experiment indicates that the morphological differences are genetically based. The moderate effective population size is not sufficient for the observed morphological differences to have evolved as a consequence of genetic drift, indicating a major role for selection subsequent to the founding of the UCSD population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.