Cystathionine beta-synthase (CBS) catalyzes the condensation of homocysteine (Hcy) and serine to cystathionine, which is then hydrolyzed to cysteine by cystathionine gamma-lyase. Inactivation of CBS results in CBS-deficient homocystinuria more commonly referred to as classical homocystinuria, which, if untreated, results in mental retardation, thromboembolic complications, and a range of connective tissue disorders. The molecular mechanisms that underlie the pathology of this disease are poorly understood. We report here the generation of a new mouse model of classical homocystinuria in which the mouse cbs gene is inactivated and that exhibits low-level expression of the human CBS transgene under the control of the human CBS promoter. This mouse model, designated “human only” (HO), exhibits severe elevations in both plasma and tissue levels of Hcy, methionine, S-adenosylmethionine, and S-adenosylhomocysteine and a concomitant decrease in plasma and hepatic levels of cysteine. HO mice exhibit mild hepatopathy but, in contrast to previous models of classical homocystinuria, do not incur hepatic steatosis, fibrosis, or neonatal death with approximately 90% of HO mice living for at least 6 months. Tail bleeding determinations indicate that HO mice are in a hypercoagulative state that is significantly ameliorated by betaine treatment in a manner that recapitulates the disease as it occurs in humans. Our findings indicate that this mouse model will be a valuable tool in the study of pathogenesis in classical homocystinuria and the rational design of novel treatments.
Cystathionine beta-synthase (CBS) deficient homocystinuria is an inherited metabolic defect that if untreated typically results in mental retardation, thromboembolism and a range of connective tissue disturbances. A knockout mouse model has previously been used to investigate pathogenic mechanisms in classical homocystinuria (Watanabe et al., PNAS 92 (1995) 1585–1589). This mouse model exhibits a semi-lethal phenotype and the majority of mice do not survive the early neonatal period. We report here that the birth incidence of cbs (−/−) mice produced from heterozygous crosses is non-Mendelian and not significantly improved by treatment with either the Hcy lowering compound betaine or the cysteine donor N-acetylcysteine. Betaine treatment did improve survival of cbs (−/−) mice and restored fertility to female cbs (−/−) mice but did so without significantly lowering Hcy levels. Surviving cbs (−/−) mice failed to show any alteration in coagulation parameters compared to wild-type controls. Moribund cbs (−/−) mice exhibited severe liver injury and hepatic fibrosis while surviving cbs (−/−) mice although less severely affected, still exhibited a level of severe liver injury that is not found in the human disease. The hepatopathy observed in this model may offer an explanation for the failure of cbs (−/−) mice to respond to betaine or exhibit a hypercoagulative phenotype. We conclude that although this model provides useful data on the biochemical sequelae of classical homocystinuria, it does not successfully recapitulate a number of important features of the human disease and its use for studying mechanisms in homocystinuria should be treated with caution as the hepatopathy produces changes which could influence the results.
Background:No known function for the amino acid cystathionine other than as an intermediate in cysteine synthesis. Results: Cystathionine prevents ER stress induced steatotic liver injury, acute tubular necrosis and apoptosis without changing induction of the unfolded protein response. Conclusion: Abolition of cystathionine synthesis may contribute to pathogenesis in homocystinuria. Significance: Cystathionine has therapeutic potential for disease states where ER stress is implicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.