Macular disease currently poses the greatest threat to vision in aging populations. Historically, most of this pathology could only be dealt with surgically, and then only after much damage to the macula had already occurred. Current pathophysiological insights into macular diseases have allowed the development of effective new pharmacotherapies. The field of drug delivery systems has advanced over the last several years with emphasis placed on controlled release of drug to specific areas of the eye. Its unique location and tendency toward chronic disease make the macula an important and attractive target for drug delivery systems, especially sustained-release systems. This review evaluates the current literature on the research and development of sustained-release posterior segment drug delivery systems that are primarily intended for macular disease with an emphasis on age-related macular degeneration.Current effective therapies include corticosteroids and anti-vascular endothelial growth factor compounds. Recent successes have been reported using anti-angiogenic drugs for therapy of age-related macular degeneration. This review also includes information on implantable devices (biodegradable and non-biodegradable), the use of injected particles (microspheres and liposomes) and future enhanced drug delivery systems, such as ultrasound drug delivery. The devices reviewed show significant drug release over a period of days or weeks. However, macular disorders are chronic diseases requiring years of treatment. Currently, there is no 'gold standard' for therapy and/or drug delivery. Future studies will focus on improving the efficiency and effectiveness of drug delivery to the posterior chamber. If successful, therapeutic modalities will significantly delay loss of vision and improve the quality of life for patients with chronic macular disorders.
Properties of a piezoelectric polymeric angioplasty balloon that may decrease the problems of acute closure and restenosis are evaluated in this study. Polyvinylidene difluoride (PVDF), a piezoelectric and pyroelectric polymer, has sufficient strength to serve as a standard angioplasty balloon as well as functioning as an ultrasonic transmitter and/or receiver. These properties enable potential therapeutic applications using ultrasound such as plaque ablation and sonotherapy as well as vulnerable plaque diagnosis using thermography. This study investigates the resonant structure of the PVDF balloon catheter in the frequency range 5-100 kHz. Vibrations of the piezoelectric balloon are modeled using cylindrical shell theory and compared with the observed modal frequencies of PVDF cylinders with and without internal pressure. Modal frequencies are determined by measuring the near-field pressure response of the PVDF cylinders using a high frequency microphone. A rich nodal structure is observed between 5 and 100 kHz with peak relative amplitudes measured between 42 and 45 kHz. Higher order modes for cylinders with 9 μm and 28 μm wall thickness increase in frequency as the internal pressure is increased. Experimental measurements confirm theoretical models that predict both pressure-dependent and pressure-independent resonant frequencies. Frequencies of pressure-dependent modes are calculated within 2.2% of measured values at high pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.