The polysialic acid capsule of Escherichia coli K1, a causative agent of neonatal septicemia and meningitis, is an essential virulence determinant. The 17-kb kps gene cluster, which is divided into three functionally distinct regions, encodes proteins necessary for polymer synthesis and expression at the cell surface. The central region, 2, encodes products required for synthesis, activation, and polymerization of sialic acid, while flanking regions, 1 and 3, are thought to be involved in polymer assembly and transport. In this study, we identified two genes in region 3, kpsM and kpsT, which encode proteins with predicted sizes of 29.6 and 24.9 kDa, respectively. The hydrophobicity profile of KpsM suggests that it is an integral membrane protein, while KpsT contains a consensus ATP-binding domain. KpsM and KpsT belong to a family of prokaryotic and eukaryotic proteins involved with a variety of biological processes, including membrane transport. A previously described kpsT chromosomal mutant that accumulates intracellular polysialic acid was characterized and could be complemented in trans. Results of site-directed mutagenesis of the putative ATP-binding domain of KpsT are consistent with the view that KpsT is a nucleotide-binding protein. KpsM and KpsT have significant similarity to BexB and BexA, two proteins that are essential for polysaccharide capsule expression in Haemophilus influenzae type b. We propose that KpsM and KpsT constitute a system for transport of polysialic acid across the cytoplasmic membrane.
The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis strain Schu or to the live vaccine strain LVS. An LVS ⌬lnt mutant has a small-colony phenotype on sucrose medium and increased susceptibility to globomycin and rifampin. We provide data indicating that the OM lipoprotein Tul4A (LpnA) is diacylated but that it, and its paralog Tul4B (LpnB), still sort to the OM in the ⌬lnt mutant. We present a model in which the Lol sorting pathway of Francisella has a modified ABC transporter system that is capable of recognizing and sorting both triacylated and diacylated lipoproteins, and we show that this modified system is present in many other Gram-negative bacteria. We examined this model using Neisseria gonorrhoeae, which has the same Lol architecture as that of Francisella, and found that the lnt gene is not essential in this organism. This work suggests that Gram-negative bacteria fall into two groups, one in which full lipoprotein processing is essential and one in which the final acylation step is not essential, potentially due to the ability of the Lol sorting pathway in these bacteria to sort immature apolipoproteins to the OM. IMPORTANCEThis paper describes the novel finding that the final stage in lipoprotein processing (normally considered an essential process) is not required by Francisella tularensis or Neisseria gonorrhoeae. The paper provides a potential reason for this and shows that it may be widespread in other Gram-negative bacteria.
The ability of Neisseria gonorrhoeae to reduce nitric oxide (NO) may have important immunomodulatory effects on the host during infection. Therefore, a comprehensive understanding of the regulatory mechanism of the nitric oxide reductase gene (norB) needs to be elucidated. To accomplish this, we analysed the functional regions of the norB upstream region. The promoter contains an extended "10 motif (TGNTACAAT) that is required for high-level expression. Deletion and substitution analysis of the norB upstream region revealed that no sequence upstream of the "10 motif is involved in norB regulation under anaerobic conditions or in the presence of NO. However, replacement of a 29 bp inverted repeat sequence immediately downstream of the extended "10 motif gave high levels of aerobic expression of a norB : : lacZ fusion. Insertional inactivation of gonococcal nsrR, predicted to bind to this inverted repeat sequence, resulted in the loss of norB repression and eliminated NO induction capacity. Single-copy complementation of nsrR in trans restored regulation of both norB transcription and NorB activity by NO. In Escherichia coli, expression of a gonococcal nsrR gene repressed gonococcal norB; induction of norB occurred in the presence of exogenously added NO. NsrR also regulates aniA and dnrN, as well as its own expression. We also determined that Fur regulates norB by a novel indirect activation method, by preventing the binding of a gonococcal ArsR homologue, a second repressor whose putative binding site overlaps the Fur binding site.
O acetylation at carbon positions 7 or 9 of the sialic acid residues in the polysialic acid capsule of Escherichia coli K1 is catalyzed by a phase-variable contingency locus, neuO, carried by the K1-specific prophage, CUS-3. Here we describe a novel method for analyzing polymeric sialic acid O acetylation that involves the release of surface sialic acids by endo-N-acetylneuraminidase digestion, followed by fluorescent labeling and detection of quinoxalinone derivatives by chromatography. The results indicated that NeuO is responsible for the majority of capsule modification that takes place in vivo. However, a minor neuO-independent O acetylation pathway was detected that is dependent on the bifunctional polypeptide encoded by neuD. This pathway involves O acetylation of monomeric sialic acid and is regulated by another bifunctional enzyme, NeuA, which includes N-terminal synthetase and C-terminal sialyl O-esterase domains. A homologue of the NeuA C-terminal domain (Pm1710) in Pasteurella multocida was also shown to be an esterase, suggesting that it functions in the catabolism of acetylated environmental sialic acids. Our combined results indicate a previously unexpected complexity in the synthesis and catabolism of microbial sialic and polysialic acids. These findings are key to understanding the biological functions of modified sialic acids in E. coli K1 and other species and may provide new targets for drug or vaccine development.Escherichia coli K1 is a versatile human and animal facultative pathogen that causes a variety of extraintestinal diseases including sepsis, meningitis, cystitis, pyelonephritis, cellulitis, pneumonia, and postoperative infections. The ability of E. coli K1 to invade and traverse the mammalian epithelial cell barrier also may contribute to inflammatory bowel syndromes such as Crohn's disease. A primary virulence determinant in these diseases is the polysialic acid capsule or K1 antigen, a homopolymer of 2-keto-3-deoxy-5-acetamido-7,8,9-D-glycero-D-galacto-nonulosonic, or N-acetylneuraminic acid (Neu5Ac, the most common sialic acid), residues connected by ␣2,8-glycoketosidic linkages (36). The kps and neu genes needed for polysialic acid synthesis and export map to a 17-kb accretion domain inserted near pheV (7). Mutation of neu (biosynthetic) genes generally results in no capsular polysaccharide produced while kps mutations usually result in intracellular accumulation of unexported polysaccharides (46, 47). Polysialic acid is also found on the mammalian neural cell adhesion molecule and comprises the group B meningococcal, Pasteurella haemolytica A2, and Moraxella nonliquefaciens capsular polysaccharides (41). Mammalian polysialic acid regulates cell migration, axon pathfinding and targeting, and plasticity in the embryonic and adult nervous system (6). Molecular mimicry of this antigen by the bacterial capsules is thought to account for the relatively low immunogenicity of microbial polysialic acid, which has limited the attempts to produce safe and effective capsulebased vaccines ...
The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower—approximately 3-fold or more—for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.