The inherent ability of plasmonic bowtie nanoapertures (NAs) to localize the electromagnetic field at a subwavelength scale was exploited to engineer the H removal process in dilute nitrides at the nanometer level. Dilute nitride semiconductor alloys (e.g. GaAsN with a small percentage of nitrogen) are characterized by peculiar optoelectronic properties and, most importantly, by an even more peculiar response to hydrogen incorporation. In this class of materials, it is indeed possible to tune post-growth the alloy bandgap energy by a controlled incorporation of hydrogen atoms. The formation of N-H complexes neutralizes all the effects N has on the host matrix, among which is the strong narrowing of bandgap energy. In the present work, bowtie NAs resonant to the N-H complex dissociation energy were numerically modeled by finite element method simulations, realized by a lithographic approach, and characterized by scanning probe microscopy and resonant scattering spectroscopies. The conditions to get the maximum field enhancement at a specific position below the metal/semiconductor interface, namely at the dilute nitride quantum well position, were identified, demonstrating the ability to achieve a plasmon-assisted spatially selective hydrogen removal in a GaAsN/GaAs quantum well sample. Hydrogen removal through bowtie NAs turns out to be way more efficient (approximately two orders of magnitude) than through the plain surface, thus indicating that bandgap engineering through plasmonic nanostructures can be optimized for future efficient realization of site-controlled single-photon emitters and for their deterministic integration in plasmonic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.