In this paper, we present an appearance-based method for person re-identification. It consists in the extraction of features that model three complementary aspects of the human appearance: the overall chromatic content, the spatial arrangement of colors into stable regions, and the presence of recurrent local motifs with high entropy. All this information is derived from different body parts, and weighted opportunely by exploiting symmetry and asymmetry perceptual principles. In this way, robustness against very low resolution, occlusions and pose, viewpoint and illumination changes is achieved. The approach applies to situations where the number of candidates varies continuously, considering single images or bunch of frames for each individual. It has been tested on several public benchmark datasets (ViPER, iLIDS, ETHZ), gaining new state-of-the-art performances.
We propose a novel methodology for re-identification, based on Pictorial Structures (PS). Whenever face or other biometric information is missing, humans recognize an individual by selectively focusing on the body parts, looking for part-to-part correspondences. We want to take inspiration from this strategy in a re-identification context, using PS to achieve this objective. For single image re-identification, we adopt PS to localize the parts, extract and match their descriptors. When multiple images of a single individual are available, we propose a new algorithm to customize the fit of PS on that specific person, leading to what we call a Custom Pictorial Structure (CPS). CPS learns the appearance of an individual, improving the localization of its parts, thus obtaining more reliable visual characteristics for re-identification. It is based on the statistical learning of pixel attributes collected through spatio-temporal reasoning. The use of PS and CPS leads to state-of-the-art results on all the available public benchmarks, and opens a fresh new direction for research on re-identification.
We present a novel approach for detecting social interactions in a crowded scene by employing solely visual cues. The detection of social interactions in unconstrained scenarios is a valuable and important task, especially for surveillance purposes. Our proposal is inspired by the social signaling literature, and in particular it considers the sociological notion of F-formation. An F-formation is a set of possible configurations in space that people may assume while participating in a social interaction. Our system takes as input the positions of the people in a scene and their (head) orientations; then, employing a voting strategy based on the Hough transform, it recognizes F-formations and the individuals associated with them. Experiments on simulations and real data promote our idea.
People re-identification is a fundamental operation for any multi-camera surveillance scenario. Until now, it has been performed by exploiting primarily appearance cues, hypothesizing that the individuals cannot change their clothes. In this paper, we relax this constraint by presenting a set of 3D soft-biometric cues, being insensitive to appearance variations, that are gathered using RGB-D technology. The joint use of these characteristics provides encouraging performances on a benchmark of 79 people, that have been captured in different days and with different clothing. This promotes a novel research direction for the re-identification community, supported also by the fact that a new brand of affordable RGB-D cameras have recently invaded the worldwide market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.