Social media analysis is a fast growing research area aimed at extracting useful information from social media platforms. This paper presents a methodology, called IOM-NN (Iterative Opinion Mining using Neural Networks), for discovering the polarization of social media users during election campaigns characterized by the competition of political factions. The methodology uses an automatic incremental procedure based on feed-forward neural networks for analyzing the posts published by social media users. Starting from a limited set of classification rules, created from a small subset of hashtags that are notoriously in favor of specific factions, the methodology iteratively generates new classification rules. Such rules are then used to determine the polarization of people towards a faction. The methodology has been assessed on two case studies that analyze the polarization of a large number of Twitter users during the 2018 Italian general election and 2016 US presidential election. The achieved results are very close to the real ones and more accurate than the average of the opinion polls, revealing the high accuracy and effectiveness of the proposed approach. Moreover, our approach has been compared to the most relevant techniques used in the literature (sentiment analysis with NLP, adaptive sentiment analysis, emoji-and hashtag-based polarization) by achieving the best accuracy in estimating the polarization of social media users. INDEX TERMS Social media analysis, opinion mining, user polarization, neural networks, sentiment analysis, political events.
Flight delays are frequent all over the world (about 20% of airline flights arrive more than 15min late) and they are estimated to have an annual cost of billions of dollars. This scenario makes the prediction of flight delays a primary issue for airlines and travelers. The main goal of this work is to implement a predictor of the arrival delay of a scheduled flight due to weather conditions. The predicted arrival delay takes into consideration both flight information (origin airport, destination airport, scheduled departure and arrival time) and weather conditions at origin airport and destination airport according to the flight timetable. Airline flight and weather observation datasets have been analyzed and mined using parallel algorithms implemented as MapReduce programs executed on a Cloud platform. The results show a high accuracy in predicting delays above a given threshold. For instance, with a delay threshold of 15min, we achieve an accuracy of 74.2% and 71.8% recall on delayed flights, while with a threshold of 60min, the accuracy is 85.8% and the delay recall is 86.9%. Furthermore, the experimental results demonstrate the predictor scalability that can be achieved performing data preparation and mining tasks as MapReduce applications on the Cloud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.