Despite the current advancement in drug discovery and pharmaceutical biotechnology, infection diseases induced by bacteria continue to be one of the greatest health problems worldwide, afflicting millions of people annually. Almost all microorganisms have, in fact, an intrinsic outstanding ability to flout many therapeutic interventions, thanks to their fast and easy-to-occur evolutionary genetic mechanisms. At the same time, big pharmaceutical companies are losing interest in new antibiotics development, shifting their capital investments in much more profitable research and development fields. New smart solutions are, thus, required to overcome such concerns, and should combine the feasibility of industrial production processes with cheapness and effectiveness. In this framework, nanotechnology-based solutions, and in particular silver nanoparticles (AgNPs), have recently emerged as promising candidates in the market as new antibacterial agents. AgNPs display, in fact, enhanced broad-range antibacterial/antiviral properties, and their synthesis procedures are quite cost effective. However, despite their increasing impact on the market, many relevant issues are still open. These include the molecular mechanisms governing the AgNPs-bacteria interactions, the physico-chemical parameters underlying their toxicity to prokaryotes, the lack of standardized methods and materials, and the uncertainty in the definition of general strategies to develop smart antibacterial drugs and devices based on nanosilver. In this review, we analyze the experimental data on the bactericidal effects of AgNPs, discussing the complex scenario and presenting the potential drawbacks and limitations in the techniques and methods employed. Moreover, after analyzing in depth the main mechanisms involved, we provide some general strategies/procedures to perform antibacterial tests of AgNPs, and propose some general guidelines for the design of antibacterial nanosystems and devices based on silver/nanosilver.
The interaction between cells and nanostructured materials is attracting increasing interest, because of the possibility to open up novel concepts for the design of smart nanobiomaterials with active biological functionalities. In this frame we investigated the response of human neuroblastoma cell line (SH-SY5Y) to gold surfaces with different levels of nanoroughness. To achieve a precise control of the nanoroughness with nanometer resolution, we exploited a wet chemistry approach based on spontaneous galvanic displacement reaction. We demonstrated that neurons sense and actively respond to the surface nanotopography, with a surprising sensitivity to variations of few nanometers. We showed that focal adhesion complexes, which allow cellular sensing, are strongly affected by nanostructured surfaces, leading to a marked decrease in cell adhesion. Moreover, cells adherent on nanorough surfaces exhibit loss of neuron polarity, Golgi apparatus fragmentation, nuclear condensation, and actin cytoskeleton that is not functionally organized. Apoptosis/necrosis assays established that nanoscale features induce cell death by necrosis, with a trend directly related to roughness values. Finally, by seeding SH-SY5Y cells onto micropatterned flat and nanorough gold surfaces, we demonstrated the possibility to realize substrates with cytophilic or cytophobic behavior, simply by fine-tuning their surface topography at nanometer scale. Specific and functional adhesion of cells occurred only onto flat gold stripes, with a clear self-alignment of neurons, delivering a simple and elegant approach for the design and development of biomaterials with precise nanostructuretriggered biological responses.nanobiointeractions | nanostructures | patterning T he potential of nanomaterials to trigger specific cellular responses, such as interference and/or activation of defined pathways (1-3), is promising for the development of many important scientific fields, such as regenerative medicine, biotechnology, drug delivery, and nanotoxicity assessment. Initially, cellsmaterials interactions were tackled only from a chemical point of view, because environmental sensing by cells involves specific binding between cellular receptors and ECM ligands. However, recently there has been increasing evidence that the biological response is also affected by the physical properties of the material (4). In particular, it has been demonstrated that cells are influenced by the substrate topography (5, 6), rigidity (7, 8), anisotropy (9, 10), surface charge (11, 12), and wettability (13,14). From this perspective, cellular response to external stimuli goes far beyond the bare ability of the cell to chemically sense specific ECM ligands and includes a wide range of physical cues that are generated at, or act on, the interface between cells and the surrounding environment. For instance, it has been observed that micrometer-scale roughness may affect cell proliferation and morphology (15,16), because it provides a quasi-biomimetic microenvironment to the cells. How...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.