Cadaver dogs are routinely used internationally by police and civilian search organisations to locate human remains on land and in water, yet little is currently known about the volatile organic compounds (VOCs) that are released by a cadaver underwater; how this compares to those given off by a cadaver deposited on land; and ultimately, how this affects the detection of drowned victims by dogs. The aim of this study was to identify the VOCs released by whole porcine (Sus scrofa domesticus) cadavers deposited on the surface and submerged in water using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS) to ascertain if there are notable differences in decomposition odour depending on the deposition location. For the first time in the UK, the volatile organic compounds (VOCs) from the headspace of decomposing porcine cadavers deposited in both terrestrial and water environments have been detected and identified using SPME-GCMS, including thirteen new VOCs not previously detected from porcine cadavers. Distinct differences were found between the VOCs emitted by porcine cadavers in terrestrial and water environments. In total, seventy-four VOCs were identified from a variety of different chemical classes; carboxylic acids, alcohols, aromatics, aldehydes, ketones, hydrocarbons, esters, ethers, nitrogen compounds and sulphur compounds. Only forty-one VOCs were detected in the headspace of the submerged pigs with seventy detected in the headspace of the surface-deposited pigs. These deposition-dependent differences have important implications for the training of cadaver dogs in the UK. If dog training does not account for these depositional differences, there is potential for human remains to be missed. Whilst the specific odours that elicit a trained response from cadaver dogs remain unknown, this research means that recommendations can be made for the training of cadaver dogs to incorporate different depositions, to account for odour differences and mitigate the possibility of missed human remains operationally. 1.1. VOCs from the decomposition of carbohydrates Carbohydrates are broken down into their constituent sugars and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.