Huntington disease (HD), an autosomal dominant, progressive neurodegenerative disorder, is caused by an expanded CAG repeat sequence leading to an increase in the number of glutamine residues in the encoded protein. The normal CAG repeat range is 5-36, whereas 38 or more repeats are found in the diseased state; the severity of disease is roughly proportional to the number of CAG repeats. HD shows anticipation, in which subsequent generations display earlier disease onsets due to intergenerational repeat expansion. For longer repeat lengths, somatic instability of the repeat size has been observed both in human cases at autopsy and in transgenic mouse models containing either a genomic fragment of human HD exon 1 (ref. 9) or an expanded repeat inserted into the endogenous mouse gene Hdh (ref. 10). With increasing repeat number, the protein changes conformation and becomes increasingly prone to aggregation, suggesting important functional correlations between repeat length and pathology. Because dinucleotide repeat instability is known to increase when the mismatch repair enzyme MSH2 is missing, we examined instability of the HD CAG repeat by crossing transgenic mice carrying exon 1 of human HD (ref. 16) with Msh2-/- mice. Our results show that Msh2 is required for somatic instability of the CAG repeat.
† These authors contributed equally to this manuscriptThe rotorod is commonly used to assess motor ability in mice. We examined a number of inbred strains to determine whether there is genetic variability in rotorod performance and motor learning. Mice received three trials per day for three days in a modified accelerating rotorod paradigm, and active rotation performance was calculated for each day. Male and female 129S1/SvImJ, A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, CBA/J, DBA/2J and FVB/NJ mice were tested. Strain and sex differences were observed in motor performance. Motor learning also differed across strains, as some strains showed an improvement in performance over the three days while other strains did not. In certain strains the weight and body length of the mouse correlated with rotorod performance. The role of vision in motor performance on the rotorod was assessed by a comparison of C3H/HeJ mice (with retinal degeneration) and congenic C3A.BLiA-Pde6b + (Pdeb+) mice (without retinal degeneration). The sight-impaired C3H mice stayed on the rotorod longer than did their sighted Pdeb+ partners, although both strains improved across days. Thus, we have demonstrated a genetic component in rotorod performance, and we have shown that factors other than inherent motor ability can contribute to rotorod performance in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.