GHIBAUDI, LORRAINE, JOHN COOK, CONSTANCE FARLEY, MARGARET VAN HEEK, AND JOYCE J. HWA. Fat intake affects adiposity, comorbidity factors, and energy metabolism of Sprague-Dawley rats. Obes Res. 2002;10:956 -963. Objective: Childhood obesity is an emerging health problem. This study assesses the effects of three levels of dietary fat (10%, 32%, and 45% measured by kilocalories) on weight gain, body composition, energy metabolism, and comorbidity factors in rats from weaning through maturation. Research Methods and Procedures:The role of dietary fat on the susceptibility to obesity was assessed by feeding diets containing three levels of dietary fat to rats from weaning through 7 months of age. Body composition was analyzed by DXA after 6 and 12 weeks of dietary treatment. Energy metabolism was measured by indirect calorimetry. Results: Energy intake, weight gain, fat mass, and plasma glucose, cholesterol, triglyceride, free fatty acid, leptin, and insulin levels increased dose-dependently with increased dietary fat. No difference in absolute lean mass among the three groups was observed. Therefore, the differences in weight gain are accounted for primarily by increased fat accretion. Compared with rats that were relatively resistant to obesity when on a 45% fat diet, dietinduced obesity-prone rats were in positive energy balance and had an elevated respiratory quotient, indicating a switch in energy substrate use from fat to carbohydrate, which promotes body-fat accretion. Discussion: Our data support the hypothesis that administration of increasing amount of dietary fat to very young rats enhances susceptibility to diet-induced obesity and its comorbidities.
Obesity occurs whenever energy intake exceeds energy expenditure. The ob gene product leptin is a potent anorectic agent when administered to ob/ob mice, but its effects on energy expenditure have not been investigated in detail. The present study was designed to analyze the acute metabolic effects of leptin in vivo. Analysis of oxygen consumption in ob/ob mice demonstrated a reduction in energy expenditure compared with lean controls; this reduction showed a diurnal fluctuation and was most evident during the light cycle. A single intraperitoneal dose of leptin increased oxygen consumption during the light cycle in ob/ob mice, ablating the circadian fluctuation in this parameter. In addition, leptin had a profound effect on fuel selection: the respiratory quotient was markedly reduced, indicating a reduction in carbohydrate oxidation and an increase in fat oxidation. These acute effects of leptin on metabolic parameters are consistent with the selective loss of body fat observed on chronic leptin treatment and suggest that increased energy utilization plays an important role in the anti-obese actions of leptin.
The relative contributions of nitric oxide (NO) to in vitro relaxation responses elicited by acetylcholine (ACh) were compared in vessels of different sizes from the rat mesenteric vascular bed. ACh elicited an endothelium-dependent relaxation in phenylephrine-contracted superior mesenteric arteries (SMA, unstretched luminal diam 650 microns), which was blocked by compounds that inhibited NO, such as hemoglobin (10 microM), methylene blue (10 microM), and NG-monomethyl-L-arginine (1 mM). In contrast, the endothelium-dependent relaxation induced by ACh in phenylephrine-contracted mesenteric resistance arteries (MRA, unstretched luminal diam 200 microns) was not blocked by hemoglobin, methylene blue, or NG-monomethyl-L-arginine. KCl (25 mM) partially inhibited the ACh-dependent relaxation in MRA. Furthermore, the ACh-dependent relaxation in MRA was selectively inhibited by the Ca(2+)-activated K+ channel blocker charybdotoxin (0.1 microM). In contrast, the ATP-sensitive K+ channel blocker glibenclamide (50 microM) did not block the ACh-dependent relaxation in MRA. We conclude that 1) NO is a major component of the ACh-dependent relaxation in SMA and 2) the ACh-dependent relaxation of MRA is resistant to NO inhibitors but sensitive to a Ca(2+)-activated K+ channel blocker. This suggests that an endothelium-derived hyperpolarization factor may be involved in the relaxation of MRA.
The thrombin receptor was the first cloned G protein-coupled receptor reported to be activated by proteolytic cleavage of its extracellular amino terminus. A second proteinase-activated receptor (PAR-2) was cloned recently and expressed in Xenopus laevis oocytes. PAR-2 was activated by trypsin and by a peptide (SLIGRL) derived from the new amino terminus. Since PAR-2 mRNA was detected in highly vascularized organs, we compared the physiological functions of the thrombin receptor and PAR-2 in vascular endothelium. Thrombin and trypsin both elicited endothelium-dependent relaxations in prostaglandin F2alpha (PGF2alpha)-contracted strips of porcine coronary artery. Whereas high doses of both thrombin or trypsin (10 U/mL) caused homologous desensitization, trypsin caused further relaxation of thrombin-desensitized tissues. Thrombin and PAR-2-derived peptides (SFLLRN and SLIGRL) both induced endothelium-dependent relaxations in PGF2alpha-contracted porcine coronary arteries. SFLLRN or SLIGRL (30 micronmol/L) also showed homologous desensitization but not cross desensitization. In the presence of the NO synthase inhibitor NG-monomethyl-L-arginine (1 mmol/L), both SFLLRN- and SLIGRL-induced relaxations were partially inhibited. SFLLRN elicited weak contraction in coronary arteries without endothelium, whereas SLIGRL had no effect. Intravenous injection of SFLLRN (1 mg/kg, bolus) into anesthetized rats elicited a transient depressor response followed by pronounced pressor response. In contrast, intravenous administration of SLIGRL (1 mg/kg, bolus) produced only a marked depressor response. Consistent with the in vivo data, SFLLRN contracted the endothelium-rubbed rat aortic rings and aggregated human platelets in vitro, whereas SLIGRL had no effect. The finding that both trypsin and SLIGRL induced endothelium-dependent relaxations indicates the presence of PAR-2 on endothelial cells. In addition, both trypsin and SLIGRL elicited relaxations in thrombin- or SFLLRN-desensitized tissue, suggesting that PAR-2 is distinct from thrombin receptor in vascular endothelium. The lack of PAR-2-mediated platelet aggregation or smooth muscle contraction suggested it might not share the pathogenic properties associated with the thrombin receptor in the vasculature.
Intracerebroventricular (ICV) administration of neuropeptide Y (NPY) has been shown to decrease energy expenditure, induce hypothermia, and stimulate food intake. Recent evidence has suggested that the Y5 receptor may be a significant mediator of NPY-stimulated feeding. The present study attempts to further characterize the role of NPY Y5-receptor subtypes in feeding and energy expenditure regulation. Satiated Long-Evans rats with temperature transponders implanted in the interscapular brown adipose tissue (BAT) displayed a dose-dependent decrease in BAT temperature and an increase in food intake after ICV infusion of NPY. Similar effects were induced by ICV administration of peptide analogs of NPY that activate the Y5 receptor, but not by analogs that activate Y1, Y2, or Y4 receptors. Furthermore, ICV infusion of the Y5 selective agonist D-[Trp(32)]-NPY significantly reduced oxygen consumption and energy expenditure of rats as measured by indirect calorimetry. These data suggest that the NPY Y5-receptor subtype not only mediates the feeding response of NPY but also contributes to brown fat temperature and energy expenditure regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.