The objective of this study was to compare the effects of soft tissue coverage by either muscle or fasciocutaneous tissue on the healing of open tibial fractures in a murine model. An open tibial fracture, stripped of periosteum with intramedullary fixation, was created in mice. Experimental groups were devised to allow exclusive comparison of either muscle alone or skin plus fascia in direct contact with healing bone. To exclusively assess the relative efficacy of muscle and fasciocutaneous tissue to promote healing of a fracture stripped of periosteum, a piece of sterile inert material (polytetrafluoroethylene) was positioned anteriorly, excluding skin and fascia (muscle group) or posteriorly, excluding muscle (fasciocutaneous group). Skeletal repair was assessed histologically and quantified by histomorphometry; quantitative peripheral computed tomography (pQCT) and mechanical testing using a four-point bending technique. This standardized, reproducible model allowed characterization of the morphology of open fracture healing. At 28 days postfracture, there was faster healing in the experimental muscle coverage group compared to skin and fascia alone. Furthermore, there was almost 50% more cortical bone content and a threefold stronger union beneath muscle compared to fasciocutaneous tissue (p < 0.05 by one-way ANOVA). Exclusive comparison of muscle and fasciocutaneous tissue in our novel murine model demonstrates that muscle is superior for the coverage of open tibial fractures for both the rate and quality of fracture healing. ß
Early vascularized soft tissue closure has long been recognized to be essential in achieving eventual infection free union. The question of whether muscle or fasciocutaneous tissue is superior in terms of promoting fracture healing remains unresolved. Here we review the experimental and clinical evidence for the different tissue types and advocate that the biological role of flaps should be included as a key consideration during flap selection.
Delayed union and nonunion are common complications associated with tibial fractures, particularly in the distal tibia. Existing mouse tibial fracture models are typically closed and middiaphyseal, and thus poorly recapitulate the prevailing conditions following surgery on a human open distal tibial fracture. This report describes our development of two open tibial fracture models in the mouse, where the bone is broken either in the tibial midshaft (mid-diaphysis) or in the distal tibia. Fractures in the distal tibial model showed delayed repair compared to fractures in the tibial midshaft. These tibial fracture models were applied to both wild-type and Nf1-deficient (Nf1 þ/À ) mice. Bone repair has been reported to be exceptionally problematic in human NF1 patients, and these patients can also spontaneously develop tibial nonunions (known as congenital pseudarthrosis of the tibia), which are recalcitrant to even vigorous intervention. pQCT analysis confirmed no fundamental differences in cortical or cancellous bone in Nf1-deficient mouse tibiae compared to wild-type mice. Although no difference in bone healing was seen in the tibial midshaft fracture model, the healing of distal tibial fractures was found to be impaired in Nf1 þ/À mice. The histological features associated with nonunited Nf1 þ/À fractures were variable, but included delayed cartilage removal, disproportionate fibrous invasion, insufficient new bone anabolism, and excessive catabolism. These findings imply that the pathology of tibial pseudarthrosis in human NF1 is complex and likely to be multifactorial. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.