As the result of genetic alterations and tumor hypoxia, many cancer cells avidly take up glucose and generate lactate through lactate dehydrogenase A (LDHA), which is encoded by a target gene of c-Myc and hypoxia-inducible factor (HIF-1). Previous studies with reduction of LDHA expression indicate that LDHA is involved in tumor initiation, but its role in tumor maintenance and progression has not been established. Furthermore, how reduction of LDHA expression by interference or antisense RNA inhibits tumorigenesis is not well understood. Here, we report that reduction of LDHA by siRNA or its inhibition by a small-molecule inhibitor (FX11 [3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic acid]) reduced ATP levels and induced significant oxidative stress and cell death that could be partially reversed by the antioxidant N-acetylcysteine. Furthermore, we document that FX11 inhibited the progression of sizable human lymphoma and pancreatic cancer xenografts. When used in combination with the NAD + synthesis inhibitor FK866, FX11 induced lymphoma regression. Hence, inhibition of LDHA with FX11 is an achievable and tolerable treatment for LDHA-dependent tumors. Our studies document a therapeutical approach to the Warburg effect and demonstrate that oxidative stress and metabolic phenotyping of cancers are critical aspects of cancer biology to consider for the therapeutical targeting of cancer energy metabolism.glycolysis | lymphoma | pancreatic cancer | redox stress | xenograft models
The transcription factor nuclear factor kappaB (NF-kappaB), which regulates expression of numerous antiinflammatory genes as well as genes that promote development of the prosurvival, antiapoptotic state is up-regulated in many cancer cells. The natural product resveratrol, a polyphenolic trans-stilbene, has numerous biological activities and is a known inhibitor of activation of NF-kappaB, which may account for some of its biological activities. Resveratrol exhibits activity against a wide variety of cancer cells and has demonstrated activity as a cancer chemopreventive against all stages, i.e., initiation, promotion, and progression. The biological activities of resveratrol are often ascribed to its antioxidant activity. Both antioxidant activity and biological activities of analogues of resveratrol depend upon the number and location of the hydroxy groups. In the present study, phenolic analogues of resveratrol and a series of substituted trans-stilbenes without hydroxy groups were compared with resveratrol for their abilities to inhibit the human tumor necrosis factor alpha-induced (TNF-alpha) activation of NF-kappaB, using the Panomics NF-kappaB stable reporter cell line 293/NF-kappaB-luc. A series of 75 compounds was screened to identify substituted trans-stilbenes that were more active than resveratrol. Dose-response studies of the most active compounds were carried out to obtain IC50 values. Numerous compounds were identified that were more active than resveratrol, including compounds that were devoid of hydroxy groups and were 100-fold more potent than resveratrol. The substituted trans-stilbenes that were potent inhibitors of the activation of NFkappaB generally did not exhibit antioxidant activity. The results from screening were confirmed using BV-2 microglial cells where resveratrol and analogues were shown to inhibit LPS-induced COX-2 expression.
A series of peri-acylated gossylic nitriles were synthesized from gossypol dioxime by treatment of the dioxime with the appropriate acid anhydride and its salt. The reaction pathway was elucidated by isolation and characterization of intermediates. Peri-acylated gossylic nitriles (acyl = acetyl, propionyl, butyryl, and valeryl) were compared with gossypol for activity against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. The gossylic nitriles all retain activity, with activity increasing with the length of the peri-acyl group. Gossylic nitrile 1,1'-divalerate shows antimalarial activity comparable to gossypol itself. The peri-acylated gossylic nitriles are strong inhibitors of parasite lactate dehydrogenase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.