Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2), have demonstrated clinical efficacy in patients with heavily-treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy, but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and, in contrast to E2, ShERPAs did not cause significant uterine growth.
Hydrogen sulfide (HS) is now recognized as an important gaseous transmitter that is involved in a variety of biological processes. Here, we report the design and synthesis of a luminescent lanthanide biosensor for HS, LP2-Cu(II)-Ln(III), a heterobinuclear metal complex that uses Cu(II) decomplexation to control millisecond-scale-lifetime-Tb(III)- or Eu(III)-emission intensity. LP2-Cu(II)-Ln(III) responded rapidly, selectively, and with high sensitivity to aqueous HS. The probe's potential for biological applications was verified by measuring the HS generated by the slow-releasing chemical-sulfide-donor GYY4147, by cystathionine γ-lyase (CSE), and by NaS-stimulated HeLa cells.
Hydrogen sulfide is produced from l-cysteine by the action of both cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) and increasingly has been found to play a profound regulatory role in a range of physiological processes. Mounting evidence suggests that upregulation of hydrogen sulfide biosynthesis occurs in several disease states, including rheumatoid arthritis, hypertension, ischemic injury, and sleep-disordered breathing. In addition to being critical tools in our understanding of hydrogen sulfide biology, inhibitors of CSE hold therapeutic potential for the treatment of diseases in which increased levels of this gasotransmitter play a role. We describe the discovery and development of a novel series of potent CSE inhibitors that show increased activity over the benchmark inhibitor and, importantly, display high selectivity for CSE versus CBS.
Inflammation is a cancer hallmark that underlies cancer incidence and promotion, and eventually progression to metastasis. Therefore, adding an anti-inflammatory drug to standard cancer regiments may improve patient outcome. One such drug, aspirin (acetylsalicylic acid, ASA), has been explored for cancer chemoprevention and anti-tumor activity. Besides inhibiting the cyclooxygenase 2-prostaglandin axis, ASA's anticancer activities have also been attributed to nuclear factor ĸB (NFĸB) inhibition. Because prolonged ASA use may cause gastrointestinal toxicity, a prodrug strategy has been implemented successfully. In this prodrug design the carboxylic acid of ASA is masked and additional pharmacophores are incorporated.This protocol describes how we synthesized an aspirin-fumarate prodrug, GTCpFE, and characterized its inhibition of the NFĸB pathway in breast cancer cells and attenuation of the cancer stem-like properties, an important NFĸB-dependent phenotype. GTCpFE effectively inhibits the NFĸB pathway in breast cancer cell lines whereas ASA lacks any inhibitory activity, indicating that adding fumarate to ASA structure significantly contributes to its activity. In addition, GTCpFE shows significant anti-cancer stem cell activity by blocking mammosphere formation and attenuating the cancer stem cell associated CD44 + CD24-immunophenotype. These results establish a viable strategy to develop improved anti-inflammatory drugs for chemoprevention and cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.