The state of Selangor, in Malaysia consist of urban and peri-urban centres with good transportation system, and suitable temperature levels with high precipitations and humidity which make the state ideal for high number of dengue cases, annually. This study investigates if districts within the Selangor state do influence each other in determining pattern of dengue cases. Study compares two different models; the Autoregressive Integrated Moving Average (ARIMA) and Ensemble ARIMA models, using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) measurement to gauge their performance tools. ARIMA model is developed using the epidemiological data of dengue cases, whereas ensemble ARIMA incorporates the neighbouring regions’ dengue models as the exogenous variable (X), into traditional ARIMA model. Ensemble ARIMA models have better model fit compared to the basic ARIMA models by incorporating neighbuoring effects of seven districts which made of state of Selangor. The AIC and BIC values of ensemble ARIMA models to be smaller compared to traditional ARIMA counterpart models. Thus, study concludes that pattern of dengue cases for a district is subject to spatial effects of its neighbouring districts and number of dengue cases in the surrounding areas.
After a breakdown notified in Wuhan, China in December 2019, COVID-19 is declared as pandemic diseases. To the date more than 13 million confirmed cases and more than half a million are dead around the world. This virus also attached Malaysia in its immature stage where 8718 cases were confirmed and 122 were declared as death. Malaysia responsibly controlled the spread by enforcing MCO. Hence, it is required to visualize the pattern of Covid-19 spread. Also, it is necessary to estimate the impact of the enforced prevention measures. In this paper, an infectious disease dynamic modeling (SEIR) is used to estimate the epidemic spread in Malaysia. The main assumption is to update the reproduction number Rt with respect to the implemented prevention measures. For a time-frame of five month, the Rt was assumed to vary between 2.9 and 0.3. Moreover, the manuscript includes two possible scenarios: the first will be the extension of the stricter measures all over the country, and the second will be the gradual lift of the lock-down. After implementing several stages of lock-down we have found that the estimated values of the Rt with respect to the strictness degree varies between 0.2 to 1.1. A continuous strict lock-down may reduce the Rt to 0.2 and accordingly the estimated active cases will be reduced to 20 by the beginning of September 2020. In contrast, the second scenario considers a gradual lift of the enforced prevention measures by the end of June 2020, here we have considered three possible outcomes according to the MCO relaxation. Thus, the estimated values of Rt = 0.7, 0.9, 1.1, which shows a rapid increase in the number of active cases. The implemented SEIR model shows a close resemblance with the actual data recorded from 10, March till 7, July 2020.
This study investigated the potential relationship between dengue cases and air quality - as measured by the Air Pollution Index (API) for five zones in the state of Selangor, Malaysia. Dengue case patterns can be learned using prediction models based on feedback (lagged terms). However, the question whether air quality affects dengue cases is still not thoroughly investigated based on such feedback models. This work developed dengue prediction models using the autoregressive integrated moving average (ARIMA) and ARIMA with an exogeneous variable (ARIMAX) time series methodologies with API as the exogeneous variable. The Box Jenkins approach based on maximum likelihood was used for analysis as it gives effective model estimates and prediction. Three stages of model comparison were carried out for each zone: first with ARIMA models without API, then ARIMAX models with API data from the API station for that zone and finally, ARIMAX models with API data from the zone and spatially neighbouring zones. Bayesian Information Criterion (BIC) gives goodness-of-fit versus parsimony comparisons between all elicited models. Our study found that ARIMA models, with the lowest BIC value, outperformed the rest in all five zones. The BIC values for the zone of Kuala Selangor were -800.66, -796.22, and -790.5229, respectively, for ARIMA only, ARIMAX with single API component and ARIMAX with API components from its zone and spatially neighbouring zones. Therefore, we concluded that API levels, either temporally for each zone or spatio- temporally based on neighbouring zones, do not have a significant effect on dengue cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.