In this paper, a maximum power point tracking (MPPT) algorithm for photovoltaic (PV) systems is achieved based on fuzzy logic controller (FLC) and compared with an anfis (neuro-fuzzy) based mppt controller, this method allies the abilities of artificial neural networks in learning and the power of fuzzy logic to handle imprecise data. Both methods are simulated using matlab/ simulink. The choise of power variation and the current variation as inputs of the proposed controllersreducesthe calculation. Both FLC and ANFIS based MPPTare tested in terms of steady state performance and the pv system dynamic.
Most conventional Fuzzy Logic Controller (FLC) rules are based on the knowledge and experience of expert operators: given a specific input, FLCs produce the same output. However, FLCs do not perform very well when dealing with complex problems that comprise several input variables. Hence, an optimization tool is highly desirable to reduce the number of inputs and consequently maximize the controller performance, leading to easier maintenance and implementation. This paper, presents an enhanced fuzzy logic controller applied to a photovoltaic system. Specifically, both inputs and membership functions are reduced, resulting in a Highly Reduced Fuzzy Logic Controller (HRFLC), to model a 100kW gridconnected Photovoltaic Panel (PV) as part of a Maximum Power Point Tracking (MPPT) scheme. A DC to DC boost converter is included to transfer the total energy to the grid over a three-level Voltage Source Converter (VSC), which is controlled by varying its duty cycle. FLC generates control parameters to simulate different weather conditions. In this study, only one input representing the current variation (I) of the FLC is used to provide an effective and accurate solution. This reduction in simulation inputs results in a novel HRFLC which simplifies the solar electric system design with output Membership Functions (MFs). Both are achieved by grouping two rules instead of using an existing state-of-the-art method with twenty-five MFs. To the best of our knowledge, this is the first FLC able to provide such rules compression. Finally, a comparison with different techniques such as Perturb and Observe (P&O) shows that HRFLC can improve the dynamic and the steady state performance of the PV system. Notably, experimental results report a steady state error of 0.119%, a transient time of 0.28s and an MPPT tracking accuracy of 0.009s.
<p><span lang="EN-US">This paper presents a fuzzy logic controller for maximum power point tracking (MPPT) in photovoltaic system with reduced number of rules instead of conventional 25 rules to make the system lighter which will improve the tracking speed and reduce the static error, engendering a global performance improvements. in this work the proposed system use the power variation and current variation as inputs to simplify the calculation, the introduced controller is connected to a conventional grid and simulated with MATLAB/SIMULINK. The simulation results shows a promising indication to adopt the introduced controller as an a good alternative to traditional MPPT system for further practical applications</span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.