The Colebrook-White equation is often used for calculation of the friction factor in turbulent regimes; it has succeeded in attracting a great deal of attention from researchers. The Colebrook–White equation is a complex equation where the computation of the friction factor is not direct, and there is a need for trial-error methods or graphical solutions; on the other hand, several researchers have attempted to alter the Colebrook-White equation by explicit formulas with the hope of achieving zero-percent (0%) maximum deviation, among them Dejan Brkić and Pavel Praks. The goal of this paper is to discuss the results proposed by the authors in their paper:” Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” and to propose more accurate formulas.
The drinking-water supply sector has mostly targeted the water-borne transmission of pathogens. The most common method employed is the chlorination of drinking-water at treatment plants and in the distribution systems. In Algeria, the use of chlorine in drinking water treatment is a widespread practice. To enhance the concentration of the residual chlorine in the public water-supply system of a part of Souk Ahras city (Faubourg) (Algeria) known by its low concentration of the free residual chlorine (according to the water utility – Algérienne des Eaux: ADE investigation) especially at the point of use, practical steps were carried out. The method is a combination between numerical simulation using EPANET2 software and field measurements. Using statistical analysis the hydraulic model was calibrated and the observed values were very closer to the simulated results. The concentration was improved throughout the network after the injection of the appropriate dose.
Drainage and sewer network runs mostly under free surface flow condition. Among the characteristics which are important for practitioners are the flow velocity and water surface angle. The computation of these parameters in partially full pipes using Manning equation is implicit and requires iterative and laborious calculation methods. The goal of this paper is to provide a new method, where the exact computation of the flow velocity and water surface angle in partially filled pipe becomes easy, direct and simple using a reference pipe with known characteristics.
This paper presents a new approach for the computation of flow velocity in pipes arranged in parallel based on an analytic development. The estimation of the flow parameters using existing methods requires trial and error procedures. The assessment of flow velocity is of great importance in flow measurement methods and in the design of drainage networks, among others. In drainage network design, the flow is mostly of free surface type. A new method is developed to eliminate the need for trial methods, where the computation of the flow velocity becomes easy, simple, and direct with zero deviation compared to Manning equation results and other approaches such as that have been considered as the best existing solutions. This research work shows that these approaches lack accuracy and do not cover the entire range of flow surface angles: 0° ≤ θ ≤ 360°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.