Metastasis is a frequent and lethal complication of cancer. Vascular endothelial growth factor‐C (VEGF‐C) is a recently described lymphangiogenic factor. Increased expression of VEGF‐C in primary tumours correlates with dissemination of tumour cells to regional lymph nodes. However, a direct role for VEGF‐C in tumour lymphangiogenesis and subsequent metastasis has yet to be demonstrated. Here we report the establishment of transgenic mice in which VEGF‐C expression, driven by the rat insulin promoter (Rip), is targeted to β‐cells of the endocrine pancreas. In contrast to wild‐type mice, which lack peri‐insular lymphatics, RipVEGF‐C transgenics develop an extensive network of lymphatics around the islets of Langerhans. These mice were crossed with Rip1Tag2 mice, which develop pancreatic β‐cell tumours that are neither lymphangiogenic nor metastatic. Double‐transgenic mice formed tumours surrounded by well developed lymphatics, which frequently contained tumour cell masses of β‐cell origin. These mice frequently developed pancreatic lymph node metastases. Our findings demonstrate that VEGF‐C‐induced lymphangiogenesis mediates tumour cell dissemination and the formation of lymph node metastases.
The lymphatic vasculature transports extravasated tissue fluid, macromolecules and cells back into the blood circulation. Recent reports have focused on the molecular mechanisms regulating the lymphatic vessels. Vascular endothelial growth factor (VEGF)-C and VEGF-D have been shown to stimulate lymphangiogenesis and their receptor, VEGFR-3, has been linked to human hereditary lymphedema. Here we show that a soluble form of VEGFR-3 is a potent inhibitor of VEGF-C/VEGF-D signaling, and when expressed in the skin of transgenic mice, it inhibits fetal lymphangiogenesis and induces a regression of already formed lymphatic vessels, though the blood vasculature remains normal. Transgenic mice develop a lymphedema-like phenotype characterized by swelling of feet, edema and dermal fibrosis. They survive the neonatal period in spite of a virtually complete lack of lymphatic vessels in several tissues, and later show regeneration of the lymphatic vasculature, indicating that induction of lymphatic regeneration may also be possible in humans.
Vascular endothelial growth factor (VEGF) is a key regulator of blood vessel development in embryos and angiogenesis in adult tissues. Unlike VEGF, the related VEGF-C stimulates the growth of lymphatic vessels through its specific lymphatic endothelial receptor VEGFR-3. Here it is shown that targeted inactivation of the gene encoding VEGFR-3 resulted in defective blood vessel development in early mouse embryos. Vasculogenesis and angiogenesis occurred, but large vessels became abnormally organized with defective lumens, leading to fluid accumulation in the pericardial cavity and cardiovascular failure at embryonic day 9.5. Thus, VEGFR-3 has an essential role in the development of the embryonic cardiovascular system before the emergence of the lymphatic vessels.
Vascular endothelial growth factor receptor‐3 (VEGFR‐3) has an essential role in the development of embryonic blood vessels; however, after midgestation its expression becomes restricted mainly to the developing lymphatic vessels. The VEGFR‐3 ligand VEGF‐C stimulates lymphangiogenesis in transgenic mice and in chick chorioallantoic membrane. As VEGF‐C also binds VEGFR‐2, which is expressed in lymphatic endothelia, it is not clear which receptors are responsible for the lymphangiogenic effects of VEGF‐C. VEGF‐D, which binds to the same receptors, has been reported to induce angiogenesis, but its lymphangiogenic potential is not known. In order to define the lymphangiogenic signalling pathway we have created transgenic mice overexpressing a VEGFR‐3‐specific mutant of VEGF‐C (VEGF‐C156S) or VEGF‐D in epidermal keratinocytes under the keratin 14 promoter. Both transgenes induced the growth of lymphatic vessels in the skin, whereas the blood vessel architecture was not affected. Evidence was also obtained that these growth factors act in a paracrine manner in vivo. These results demonstrate that stimulation of the VEGFR‐3 signal transduction pathway is sufficient to induce specifically lymphangiogenesis in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.