Augmenting antitumor immunity is a promising way to enhance the potency of oncolytic adenoviral therapy. Granulocyte-macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific CD8(+) cytotoxic T-lymphocytes. Serotype 5 adenoviruses (Ad5) are commonly used in cancer gene therapy. However, expression of the coxsackie-adenovirus receptor is variable in many advanced tumors and preclinical data have demonstrated an advantage for replacing the Ad5 knob with the Ad3 knob. Here, a 5/3 capsid chimeric and p16-Rb pathway selective oncolytic adenovirus coding for GMCSF was engineered and tested preclinically. A total of 21 patients with advanced solid tumors refractory to standard therapies were then treated intratumorally and intravenously with Ad5/3-D24-GMCSF, which was combined with low-dose metronomic cyclophosphamide to reduce regulatory T cells. No severe adverse events occurred. Analysis of pretreatment samples of malignant pleural effusion and ascites confirmed the efficacy of Ad5/3-D24-GMCSF in transduction and cell killing. Evidence of biological activity of the virus was seen in 13/21 patients and 8/12 showed objective clinical benefit as evaluated by radiology with Response Evaluation Criteria In Solid Tumors (RECIST) criteria. Antiadenoviral and antitumoral immune responses were elicited after treatment. Thus, Ad5/3-D24-GMCSF seems safe in treating cancer patients and promising signs of efficacy were seen.
Granulocyte macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific cytotoxic T-cells through antigen-presenting cells. Oncolytic tumor cell-killing can produce a potent costimulatory danger signal and release of tumor epitopes for antigen-presenting cell sampling. Therefore, an oncolytic adenovirus coding for GMCSF was engineered and shown to induce tumor-specific immunity in an immunocompetent syngeneic hamster model. Subsequently, 20 patients with advanced solid tumors refractory to standard therapies were treated with Ad5-D24-GMCSF. Of the 16 radiologically evaluable patients, 2 had complete responses, 1 had a minor response, and 5 had disease stabilization. Responses were frequently seen in injected and noninjected tumors. Treatment was well tolerated and resulted in the induction of both tumor-specific and virus-specific immunity as measured by ELISPOT and pentamer analysis. This is the first time that oncolytic virus-mediated antitumor immunity has been shown in humans. Ad5-D24-GMCSF is promising for further clinical testing.
Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum--a possible indicator of immune response--increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy.
Purpose: Multiple injections of oncolytic adenovirus could enhance immunologic response. In the first part of this article, the focus was on immunologic aspects. Sixty patients previously na€ ve to oncolytic virus and who had white blood cells available were treated. Thirty-nine of 60 were assessed after a single virus administration, whereas 21 of 60 received a "serial treatment" consisting of three injections within 10 weeks. In the second part, we focused on 115 patients treated with a granulocyte macrophage colony-stimulating factor (GM-CSF)-coding capsid chimeric adenovirus, CGTG-102.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.