Historical documentary sources, reflecting different port activities in Stockholm, are utilised to derive a 500-year winter/spring temperature reconstruction for the region. These documentary sources reflect sea ice conditions in the harbour inlet and those series that overlap with the instrumental data correlate well with winter/spring temperatures. By refining dendroclimatological methods, the time-series were composited to a mean series and calibrated (1756-1841; r 2 = 66%) against Stockholm January-April temperatures. Strong verification was r 2 = 60%; RE/CE = 0.55). By including the instrumental data, the quantified (QUAN) reconstruction indicates that recent two decades have been the warmest period for the last 500 years. Coldest conditions occurred during the 16th/17th and early 19th centuries. An independent qualitative (QUAL) historical index was also derived for the Stockholm region. Comparison between QUAN and QUAL shows good coherence at inter-annual time-scales, but QUAL distinctly appears to lack low frequency information. Comparison is also made to other winter temperature based annually resolved records for the Baltic region. Between proxy coherence is generally good although it decreases going back in time with the 1500-1550 period being the weakest period-possibly reflecting data quality issues in the different reconstructions.
We use long instrumental temperature series together with available field reconstructions of sea-level pressure (SLP) and three-dimensional climate model simulations to analyze relations between temperature anomalies and atmospheric circulation patterns over much of Europe and the Mediterranean for the late winter/early spring (January-April, JFMA) season. A Canonical Correlation Analysis (CCA) investigates interannual to interdecadal covariability between a new gridded SLP field reconstruction and seven long instrumental temperature series covering the past 250 years. We then present and discuss prominent atmospheric circulation patterns related to anomalous warm and cold JFMA conditions within different European areas spanning the period 1760-2007. Next, using a data assimilation technique, we link gridded SLP data with a climate model (EC-Bilt-Clio) for a better dynamical understanding of the relationship between large scale circulation and European climate. We thus present an alternative approach to reconstruct climate for the pre-instrumental period based on the assimilated model simulations. Furthermore, we present an independent method to extend the dynamic circulation analysis for anomalously cold European JFMA conditions back to the sixteenth century. To this end, we use documentary records that are spatially representative for the long instrumental records and derive, through modern analogs, large-scale SLP, surface temperature and precipitation fields. The skill of the analog method is tested in the virtual world of two three-dimensional climate simulations . This endeavor offers new possibilities to both constrain climate model into a reconstruction mode (through the assimilation approach) and to better assess documentary data in a quantitative way.
Swedish archives provide several types of documentary sources relating to port activities in Stockholm for the eighteenth and nineteenth centuries. These documentary sources reflect sea ice conditions in the harbour inlet and correlate well with late-winter to early-spring temperatures. Instrumental measurements of temperature in Stockholm began in 1756, which allow for careful empirical assessment of the proxies from that date. After combining proxy series from several sources to derive a mean time series, calibration and verification trials are made and a preliminary January-April temperature reconstruction is developed from 1692 to 1892. This series, which explains 67% of the temperature variance, is further verified against independent temperature data from Uppsala, which go back to 1722. This additional verification of the reconstruction also assesses the quality of the early instrumental data from Uppsala, which has potential homogeneity problems before 1739 as a result of the thermometer being located indoors. Our analysis suggests that before this date, the instrumental data may be 'too warm' and need correction. Together, the documentary and instrumental data identify the post-1990 period as the warmest in three centuries. Continuing assessment of the historical archives should result in some of the documentary records being extended back into the early sixteenth century, allowing the future development of a southern Swedish winter temperature reconstruction for the last -500 years.
Two European temperature reconstructions for the past half-millennium, January-to-April air temperature for Stockholm (Sweden) and seasonal temperature for a Central European region, both derived from the analysis of documentary sources and long instrumental records, are compared with the output of climate simulations with the model ECHO-G. The analysis is complemented by comparisons with the long (early)-instrumental record of Central England Temperature (CET). Both approaches to study past climates (simulations and reconstructions) are burdened with uncertainties. The main objective of this comparative analysis is to identify robust features and weaknesses in each method which may help to improve models and reconstruction methods. The results indicate a general agreement between simulations obtained with temporally changing external forcings and the reconstructed Stockholm and CET records for the multi-centennial temperature trend over the recent centuries, which is not reproduced in a control simulation. This trend is likely due to the long-term change in external forcing. Additionally, the Stockholm reconstruction and the CET record also show a clear multi-decadal warm episode peaking around AD 1730, which is absent in the simulations. Neither the reconstruction uncertainties nor the model internal climate variability can easily explain this difference. Regarding the interannual variability, the Stockholm series displays, in some periods, higher amplitudes than the simulations but these differences are within the statistical uncertainty and further decrease if output from a regional model driven by the global model is used. The long-term trend of the Central European temperature series agrees less well with the simulations. The reconstructed temperature displays, for all seasons, a smaller difference between the present climate and past centuries than is seen in the simulations. Possible reasons for these differences may be related to a limitation of the traditional 'indexing' technique for converting documentary evidence to temperature values to capture long-term climate changes, because the documents often reflect temperatures relative to the contemporary authors' own perception of what constituted 'normal' conditions. By contrast, the amplitude of the simulated and reconstructed inter-annual variability agrees rather well.
Abstract. This article explores documentary evidence of droughts in Sweden in the pre-instrumental period (1400–1800 CE). A database has been developed using contemporary sources, such as private and official correspondence letters, diaries, almanac notes, manorial accounts, and weather data compilations. The primary purpose is to utilize hitherto unused documentary data as an input for an index that can be useful for comparisons on a larger European scale. The survey shows that eight subperiods can be considered as having been particularly struck by summer droughts, causing concomitant harvest failures and having great social impacts in Sweden. This is the case with 1634–1639, 1652–1657, 1665–1670, 1677–1684, 1746–1750, 1757–1767, 1771–1776, and 1780–1783 CE. Within these subperiods, 1652 and 1657 stand out as particularly troublesome years. A number of data for dry summers are also found for the middle decades of the 15th century, the first decade of the 1500s, and the 1550s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.