Agitation- and freeze-thawing-induced aggregation of recombinant human factor XIII (rFXIII) is due to interfacial adsorption and denaturation at the air-liquid and ice-liquid interfaces. The aggregation pathway proceeds through soluble aggregates to formation of insoluble aggregates regardless of the denaturing stimuli. A nonionic surfactant, polyoxyethylene sorbitan monolaurate (Tween 20), greatly reduces the rate of formation of insoluble aggregates as a function of surfactant concentration, thereby stabilizing native rFXIII. Maximum protection occurs at concentrations close to the critical micelle concentration (cmc), independent of initial protein concentration. To study the mechanistic aspects of the surfactant-induced stabilization, a series of spectroscopic studies were conducted. Electron paramagnetic resonance spectroscopy indicates that binding is not occurring between Tween 20 and either the native state or a folding intermediate state of rFXIII. Further, circular dichroism spectroscopy suggests that Tween 20 does not prevent the secondary structural changes induced upon guanidinium hydrochloride-induced unfolding. Taken together, these results imply that Tween 20 protects rFXIII against freeze-thawing- and agitation-induced aggregation primarily by competing with stress-induced soluble aggregates for interfaces, inhibiting subsequent transition to insoluble aggregates.
The effects of various classes of additives on the stability of a protein with a relatively hydrophobic surface, Humicola lanuginosa lipase (HLL), during lyophilization and storage in the dried solid, were investigated. Prior to lyophilization, it was found that 1 M trehalose or 1% (wt/vol) Tween 20 caused the protein to precipitate. Infrared spectroscopy indicated that trehalose "salted-out" native HLL, whereas Tween 20 induced non-native aggregates. Optimal recovery of native protein in the initial dried solid was obtained in the presence of additives which formed an amorphous phase and which had the capacity to hydrogen bond to the dried protein (e.g., trehalose and sucrose). Additives which crystallized during lyophilization (e.g., mannitol) or which remained amorphous, but were unable to hydrogen bond to the dried protein (e.g., dextran), afforded less stabilization relative to that seen in the absence of additives. Optimal storage stability in the dried solid required that both protein unfolding during lyophilization was minimized and that the formulation was stored at a temperature below its Tg value. Crystallization of sucrose during storage greatly reduced the storage stability of HLL. This was attributed to the increased moisture content and the reduced Tg value in the remaining amorphous phase containing the protein. Sucrose crystallization and the resulting damage to the protein were inhibited by decreasing the mass ratio of sucrose:protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.