Thrombosis, or blood clot formation, and its sequelae remain a leading cause of morbidity and mortality, and recurrent thrombosis is common despite current optimal therapy. Protein disulfide isomerase (PDI) is an oxidoreductase that has recently been shown to participate in thrombus formation. While currently available antithrombotic agents inhibit either platelet aggregation or fibrin generation, inhibition of secreted PDI blocks the earliest stages of thrombus formation, suppressing both pathways. Here, we explored extracellular PDI as an alternative target of antithrombotic therapy. A high-throughput screen identified quercetin-3-rutinoside as an inhibitor of PDI reductase activity in vitro. Inhibition of PDI was selective, as quercetin-3-rutinoside failed to inhibit the reductase activity of several other thiol isomerases found in the vasculature. Cellular assays showed that quercetin-3-rutinoside inhibited aggregation of human and mouse platelets and endothelial cell-mediated fibrin generation in human endothelial cells. Using intravital microscopy in mice, we demonstrated that quercetin-3-rutinoside blocks thrombus formation in vivo by inhibiting PDI. Infusion of recombinant PDI reversed the antithrombotic effect of quercetin-3-rutinoside. Thus, PDI is a viable target for small molecule inhibition of thrombus formation, and its inhibition may prove to be a useful adjunct in refractory thrombotic diseases that are not controlled with conventional antithrombotic agents.
Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES). We provide (i) a literature review on DRM, including clinical manifestations, inheritance, molecular genetics, myopathology and management and (ii) a meta-analysis of reported DES mutation carriers, focusing on their clinical characteristics and potential genotype-phenotype correlations. Meta-analysis: DES mutation carriers (n = 159) with 40 different mutations were included. Neurological signs were present in 74% and cardiological signs in 74% of carriers (both neurological and cardiological signs in 49%, isolated neurological signs in 22%, and isolated cardiological signs in 22%). More than 70% of carriers exhibited myopathy or muscular weakness, with normal creatine kinase levels present in one third of them. Up to 50% of carriers had cardiomyopathy and around 60% had cardiac conduction disease or arrhythmias, with atrioventricular block as an important hallmark. Symptoms generally started during the 30s; a quarter of carriers died at a mean age of 49 years. Sudden cardiac death occurred in two patients with a pacemaker, suggesting a ventricular tachyarrhythmia as cause of death. The majority of DES mutations were missense mutations, mostly located in the 2B domain. Mutations in the 2B domain were predominant in patients with an isolated neurological phenotype, whereas head and tail domain mutations were predominant in patients with an isolated cardiological phenotype.
Nonoperative management of juvenile idiopathic scoliosis (JIS) has been reported to be less effective than that of infantile idiopathic scoliosis. The goal of this study was to analyse the results of casting and/or bracing in JIS. Clinical data from seven patients with JIS, treated with casting followed by bracing (n=3) or by bracing alone (n=4), were retrospectively collected, and curve severity was measured before, during and after treatment. The median Cobb angle decreased from 37° to 25°. No patient needed surgery at a median follow-up of 4.6 years (3.4-9.1 years). Casting and/or bracing is effective for the management of JIS.
369 Protein disulfide isomerase (PDI) is a prototypical member of a large family of oxidoreductases that catalyze posttranslational disulfide exchange necessary for proper protein folding. Despite having an ER retention sequence, PDI has been identified at cellular locations outside the ER. PDI is secreted from platelets and endothelial cells upon agonist stimulation or vascular injury. Secreted PDI is essential for platelet thrombus formation and fibrin generation in vivo. Inhibition of PDI with a non specific thiol inhibitor bacitracin A or a specific inhibitory anti-PDI antibody RL90 leads to decreased thrombus formation and fibrin generation in vivo in the laser injury model of thrombosis in mice (Cho J. et al, 2008, J. Clin. Invest. 118:1123; Jasuja R. et al, 2010 Blood116:4665). We screened a 5000 compound library of known bioactive compounds using an insulin reduction assay with turbidimetric end point to identify potent and selective small molecule inhibitors of PDI. The screen identified 18 inhibitory compounds representative of 13 separate chemical scaffolds, including 3 flavonols. Rutin, a glycoside of the flavonol quercetin, was the most effective inhibitor and inhibited PDI reductase activity with an IC50 of 6.1 μM. Inhibition of PDI by rutin was confirmed in an additional fluorescence-based reductase assay using oxidized glutathione coupled to di-eosin (Di-E-GSSG). Rutin specifically inhibited PDI activity and did not affect reductase activity of other thiol isomerases ERp57, ERp72, ERp5, thioredoxin or thioredoxin reductase. PDI inhibition by rutin was fully and rapidly reversible, indicating that rutin does not covalently bind PDI. Evaluation of rutin binding to immobilized PDI using surface plasmon resonance indicated a KD of 2.8 μM. Quercetin-3-glucuronide, an abundant metabolite of rutin found in plasma, demonstrated an IC50 of 5.9 μM (3.5–10.1 μM, 95% confidence interval). Isoquercetin, hyperoside, and datiscin, other flavonols with a 3-O-glycosidic linkage also inhibited PDI reductase activity. Metabolites of rutin that lack a 3-O-glycoside such as tamarixetin, isorhamnetin, diosmetin, or quercetin did not inhibit PDI reductase activity, whether or not they are hydroxylated or methoxylated at the 3' and 4' positions on ring B of the flavonol backbone. Activation of washed human platelets induced by 50 μM AYPGKF, a PAR4 agonist, was reversibly inhibited by rutin in a dose-dependent manner. Rutin effectively blocked fibrin generation from laser activated human umbilical vein endothelial cells bathed in plasma with an IC50of approximately 5 μM and 95 % reduction in fibrin formation at 10 μM rutin (P<0.001). Intravenous infusion of rutin prior to vessel wall injury in a mouse laser injury model of thrombosis showed a dose dependent inhibition of both platelet thrombus formation and fibrin generation in vivo. Platelet thrombus size was reduced by 71% at 0.1 mg/kg and fibrin deposition was inhibited by 68% with an intravenous dose of 0.3 mg/kg. Orally administered rutin also demonstrated antithrombotic activity. However, diosmetin, a non derivatizable form of flavonol that cannot under glycosylation at position 3 of the C ring did not affect platelet thrombus size or fibrin deposition. Infused exogenous recombinant PDI can overcome the inhibitory effect of rutin on thrombus formation. These results indicate that PDI is the relevant antithrombotic target of rutin in vivo. Rutin is well tolerated at concentrations higher than that required to inhibit PDI activity in vivo. Thus, targeting extracellular PDI for antiplatelet and anticoagulant therapy may be a viable approach to prevent thrombosis in a setting of coronary artery disease, stroke and venous thromboembolism. Disclosures: No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.