This article deals with the parabolic equation ∂tw − c(t)∂2x w = f in D, D = { (t, x) ∈ R2 : t > 0, φ1 (t) < x < φ2(t) } with φi : [0,+∞[→ R, i = 1, 2 and c : [0,+∞[→ R satisfying some conditions and the problem is supplemented with boundary conditions of Dirichlet-Robin type. We study the global regularity problem in a suitable parabolic Sobolev space. We prove in particular that for f ∈ L2(D) there exists a unique solution w such that w, ∂tw, ∂jw ∈ L2(D), j = 1, 2. Notice that the case of bounded non-rectangular domains is studied in [9]. The proof is based on energy estimates after transforming the problem in a strip region combined with some interpolation inequality. This work complements the results obtained in [19] in the case of Cauchy-Dirichlet boundary conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.