Medicinal plants play an important role in the management of diabetes mellitus especially in developing countries where resources are lacking. Herbal of natural origin, unlike the synthetic compounds, are more effective, safer and have less side effects. For continuing research on biological properties of Moroccan medicinal plants, the present work was undertaken to evaluate the potential and mechanism of the antidiabetic activity of the Caralluma europaea methanolic extract in alloxan-induced diabetic mice. A high-performance liquid chromatography technique (HPLC) was used to identify and quantify the major phenolic compounds in the methanolic extract. The in vitro antioxidant property was evaluated using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging method, reducing power and ß-carotene-linoleic acid assays. The acute toxicity of the extract was evaluated by giving it orally to mice at single doses of 200, 500, 1000, 2000 mg/kg body weight. The antidiabetic effect was conducted on Swiss albino mice. Diabetes was induced with single intraperitonial injection of alloxan monohydrate (200 mg/kg body weight) and animals were treated with methanol extract at a dose of 250 mg/kg and 500 mg/kg body weight. The blood glucose levels were measured and histopathological analysis of pancreas was performed to evaluate alloxan-induced tissue injuries. The main phenols identified and quantified in the extract were ferulic acid, quercetine, 3,4 dihydroxybenzoic acid, rutin, epigallocatechin, and catechin. Ferulic acid was found to be the main phenolic compound ant its proportion was up to 52% of total phenolic compounds, followed by quercetin (36%). The result showed that methanol extract exhibited an antioxidant effect. Acute toxicity studies revealed that C. europaea extract was safe up 2000 mg/kg body weight and approximate LD50 is more than 2000 mg/kg. Moreover, the methanol extract prevented the diabetogenic effect of alloxan and decreased significantly the blood glucose level (P < 0.001) in treated mice. Morphometric study of pancreas revealed that C. europaea extract protected significantly the islets of Langerhans against alloxan-induced tissue alterations.
The development of antibiotic resistance is multifactorial, including the specific nature of the relationship of bacteria to antibiotics. This situation has forced scientists to search for new antimicrobial substances from various sources as novel antimicrobial chemotherapeutic agents. Recently, medicinal plants and their derivatives (essential oils, extracts) have become very important in therapeutics because they encounter minimal challenges of the emergence of resistance. In this direction, the antimicrobial activity of the endemic Bubonium imbricatum plant and medicinal Cladanthus arabicus plant essential oils against multidrug-resistant Enterobacteriaceae strains was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.