The phytoavailability of lead and chromium in cherry tomatoes Lycopersicon esculentum was studied both at the level of different parts of the plant (roots, stem, leaves and fruits) and at the level of its concentration in water and cultivation soil of. Two experiments are thence carried out by planting in bioponics, in a patented BIOTOP device, plants which are exposed via their root system to concentrations of 5 ppm, 10 ppm and 20 ppm of each contaminant (lead or chromium) in a nutrient solution. The results show that lead accumulates mainly in the roots with a significant amount as to allow its translocation into the stem and leaves, while only a small amount reaches the fruit. The results also show that when the concentration increases the lead content in the roots also increases, but decreases in the fruits with three floral bouquets. Conversely, the chromium substance decreases in the roots and increases in the fruit. Based on these results, we note that the average distribution of lead in the edible part of the plant is much higher than that of chromium, and also lead presence in the plant is higher compared to that of chromium.
the increasing number of cases of soil contamination by trace elements have affected crop production, and represents a risk threatening the quality of our food products. Some of these contaminants, such as trivalent chromium Cr (NO<sub>3</sub>)<sub>3,</sub> which is similar to micronutrients, can, therefore, be absorbed by plants and whose phytotoxicity has long been considered negligible, and largely underestimated. The purpose of this work was to study the transfer of trivalent chromium from nutrient solution to green beans <em>Phaseolus vulgaris L</em> grown on bioponics; the contamination responses were determined in terms of growth parameters, yield, and dry matter production; at various concentrations (5, 10 and 20 ppm). Chromium trivalent effects have also been studied in tissues plant. Results showed that the absorption of trivalent chromium from the nutrient solution and its translocation to the aerial tissues plants had no adverse effects on growth parameters, and also on beans yield. Results also showed that chromium accumulates in roots rather than in the other tissues, and did not reduce the dry matter production, in terms of translocation and bioconcentration. The transfer factor is low and green beans cannot be defined as a hyperaccumulator of chromium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.