Bioimpedance spectroscopy is used in a wide range of biomedical applications. This paper presents an integrated analog readout, which employs synchronous detection to perform galvanostatic multi-channel, multi-frequency bioimpedance measurements. The circuit was fabricated in a 0.35-µm CMOS technology and occupies an area of 1.52 mm 2 . The effect of random dc offsets is investigated, along with the use of chopping to minimize them. Impedance measurements of a known RC load and skin (using commercially available electrodes) demonstrate the operation of the system over a frequency range up to 1 MHz. The circuit operates from a ±2.5 V power supply and has a power consumption of 3.4-mW per channel.
Current drivers are fundamental circuits in bioimpedance measurements including electrical impedance tomography (EIT). In the case of EIT, the current driver is required to have a large output impedance to guarantee high current accuracy over a wide range of load impedance values. This paper presents an integrated current driver which meets these requirements and is capable of delivering large sinusoidal currents to the load. The current driver employs a differential architecture and negative feedback, the latter allowing the output current to be accurately set by the ratio of the input voltage to a resistor value. The circuit was fabricated in a 0.6- μm high-voltage CMOS process technology and its core occupies a silicon area of 0.64 mm (2) . It operates from a ± 9 V power supply and can deliver output currents up to 5 mA p-p. The accuracy of the maximum output current is within 0.41% up to 500 kHz, reducing to 0.47% at 1 MHz with a total harmonic distortion of 0.69%. The output impedance is 665 k Ω at 100 kHz and 372 k Ω at 500 kHz.
This is the accepted version of the paper.This version of the publication may differ from the final published version.Permanent repository link: https://openaccess.city.ac.uk/id/eprint/23504/ Link to published version: http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.