ABSTRACT. Embryo sexing is a powerful tool for livestock producers because it allows them to manage their breeding stocks more effectively. However, the cost of supplies and reagents, and the need for trained professionals to biopsy embryos by micromanipulation restrict the worldwide use of the technology to a limited number of specialized groups. The aim of this study was to couple a fast and inexpensive DNA extraction protocol with a practical biopsy approach to create a simple, quick, effective, and dependable embryo sexing procedure. From a total of 1847 sheep and cattle whole embryos or embryo biopsies, the sexing efficiency was 100% for embryo biopsies, 98% for sheep embryos, and 90.2% for cattle embryos. We used a primer pair that was common to both species and only 10% of the total extracted DNA. The whole protocol takes only 2 h to perform, which suggests that the proposed procedure can be readily applied to field conditions. Moreover, in addition to embryo sexing, the procedure can be used for further analyses, such as genotyping and molecular diagnosis in preimplantation embryos.
The aim of this work was to evaluate the effect of the Rolipram during the maturation of bovine oocytes and gene expression of embryos produced in vitro. Bovine ovaries were collected in slaughterhouse. The COCs were selected and divided into 5 groups: Control 0 time; Control: IVM for 24 hours; Rolipram treatments with IVM blocking for 24 hours in maturation medium containing (100, 150 and 200µM). After 24 hours all groups were reseated in IVM for another 24 hours. Subsequently COCs were subjected to the same IVM system and fertilized, being checked for cleavage post fertilization and for blastocyst. In addition, performed expression of the following genes: Mater, BMP15 and Bax. No difference was found in gene expression. Of oocytes evaluated shortly after follicular aspiration, 79.00% were in GV, GVBD, MI, while 13.40%, were in MII and 7.60%, D/NI. Significant difference was observed in different concentrations (T100, T200 and T150µM) in oocytes that have reached the MII phase compared to control treatments (P= 0.003). Differences were observed in cleavage rate (P< 0.05) between T150 and T200 when compared to the C/24 Group. A high difference was observed on blastocyst rate (P< 0.001) among treatments compared to the control group.
The imprinted H19 long non-coding RNA, a knowing oncofetal gene, presents a controversial role during the carcinogenesis process since its tumor suppressor or oncogenic activity is not completely elucidated. Since H19 lncRNA is involved in many biological pathways related to tumorigenesis, we sought to develop a non-cancer lineage with CRISPR-Cas9-mediated H19 knockdown (H19-) and observe the changes in a cellular context. To edit the promoter region of H19, two RNA guides were designed, and the murine C2C12 myoblast cells were transfected. H19 deletion was determined by DNA sequencing and gene expression by qPCR. We observed a small deletion (~ 60 bp) in the promoter region that presented four predicted transcription binding sites. The deletion reduced H19 expression (30%) and resulted in increased proliferative activity, altered morphological patterns including cell size and intracellular granularity, without changes in viability. The increased proliferation rate in the H19- cell seems to facilitate chromosomal abnormalities. The H19- myoblast presented characteristics similar to cancer cells, therefore the H19 lncRNA may be an important gene during the initiation of the tumorigenic process. Due to CRISPR/Cas9 permanent edition, the C2C12 H19- knockdown cells allows functional studies of H19 roles in tumorigenesis, prognosis, metastases, as well as drug resistance and targeted therapy.
Oocyte competence plays a key role in the overall efficiency of reproductive biotechnologies. In cattle, FSH starvation following superovulation (coasting) improves oocyte competence, blastocyst yield and pregnancy outcome when used in ovum pickup-in vitro production programs. The aim of this study was to compare the effect of coasting after exogenous FSH stimulation on goat oocyte quality and competence to support in vitro maturation and in vivo embryo development following cloning procedures in goats. Donor and recipient preparation, cumulus-oocyte complex (COC) retrieval and selection, IVM, cloning by somatic cell nuclear transfer, embryo transfer, and pregnancy diagnosis (Days 23–26) were performed according to our established procedures [Martins et al. 2016 doi: 10.1089/cell.2015.0082]. Cumulus-oocyte complexes were obtained in vivo from 71 cycling FSH-stimulated mature Nubian-crossed goats, combined or not with FSH starvation (coasting period). Donor females were oestrous synchronized with a progesterone intravaginal insert (Day 0). On Day 10, a 0.75-mg D-cloprostenol dose was given IM, with the onset of the superovulation treatment, composed of five 20-mg FSH doses (Folltropin®, Bioniche Animal Health, Pullman, WA, USA), via IM at 12-h intervals. Donors were subjected to laparoscopic ovum pickup either 9 h (control group, n = 36) or 21 h (coasting group, n = 35) after the last FSH dose, respectively. Skin fibroblast cell cultures from a male neonate were co-transfected with a mammary gland expression vector with the human lactoferrin (hLF) coding sequence and with CRISPR/Cas9 system either for the PRNP prion gene or the Rosa26 locus. A bi-allelic hLF-PRNP and a mono-allelic hLF-Rosa26 cell colony were used for cloning. Data were compared by ANOVA or the χ2 test (P < 0.05). No differences were observed between control and coasting for number of follicles (18.7 ± 1.4 v. 21.2 ± 1.7), and retrieved (17.3 ± 1.2 v. 20.7 ± 1.9), viable (15.9 ± 1.1 v. 19.6 ± 1.8), Grade I (1.5 ± 0.3 v. 2.5 ± 0.5), and Grades III+IV (6.0 ± 0.6 v. 5.7 ± 0.7) COC, as well as for COC retrieval (92.4%, 574/621 v. 94.5%, 685/725) and fusion (62.8%, 273/435 v. 61.3%, 311/507) rates, respectively, irrespective of the cell lines. However, the coasting group rendered higher number of Grade II COC (11.3 ± 1.2 v. 8.4 ± 0.7), number and proportion of Grades I+II COC (13.9 ± 1.5 v. 9.9 ± 0.9, 70.8% v. 62.4%), and maturation rate (70.9% v. 65.4%) than the control group, respectively, for a lower proportion of Grades III+IV (29.2% v. 37.6%, respectively). A total of 213 and 233 Day-1 cloned embryos from the control and the coasting groups were transferred to 18 (96/9 hLF-PRNP and 117/9 hLF-Rosa26 cells) and 19 (128/11 hLF-PRNP and 105/8 hLF-Rosa26 cells) female recipients, respectively, resulting in 1/9 (11.1%) and 4/11 (36.4%) pregnancies from the hLF-PRNP cells, and 3/9 (33.3%) and 3/8 (37.5%) from the hLF-Rosa26 cells, for the control (4/18, 22.2%) and coasting (7/19, 36.8%) groups, respectively, for an overall pregnancy rate of 29.7% (11/37). In conclusion, the use of coasting improved oocyte quality and in vitro maturation rate, also appearing to increase pregnancy outcome after goat cloning.
Objectivel-Asparaginase (ASNase) is an enzyme used in the treatment of acute lymphoblastic leukemia (ALL). As the therapeutic ASNases has bacterial origin, severe side effects are associated with its use, among them hypersensitivity and inactivation of the enzyme. In this context, the objective of this work was to produce a recombinant ASNase of bacterial origin in human cells in order to determine the presence and consequences of potential post-translational modifications on the enzyme.ResultsRecombinant ASNase was expressed in human cells with a molecular weight of 60 kDa, larger than in Escherichia coli, which is 35 kDa. N-glycosylation analysis demonstrated that the increased molecular weight resulted from the addition of glycans to the protein by mammalian cells. The glycosylated ASNase presented in vitro activity at physiological pH and temperature. Given that glycosylation can act to reduce antigenicity by masking protein epitopes, our data may contribute to the development of an alternative ASNase in the treatment of ALL in patients who demonstrate side effects to currently marketed enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.