Abstract. We design, fabricate, and characterize a frequency-selective surface (FSS) with directional thermal emission and absorption for long-wave infrared wavelengths. The FSS consists of an array of patch antennas connected by microstrips, the ensemble of which supports leakywave-type modes with forward and backward propagating branches. The branches are designed to intersect at 9.8 μm and have a broadside beam with 20-deg full width at half maximum at this wavelength. The absorption along these branches is near unity. Measurement of the hemispherical directional reflectometer shows good agreement with simulation. The ability to control the spectral and directional emittance/absorptance profiles of surfaces has significant applications for radiation heat transfer and sensing.
We design, fabricate, and characterize a Frequency Selective Surface (FSS) with directional thermal emission and absorption for long-wave infrared wavelengths (LWIR). The FSS consists of an array of patch antennas connected by microstrips, the ensemble of which supports leaky-wave type modes with forward and backward propagating branches. The branches are designed to intersect at 9.8 μm, and have a broadside beam with 20° FWHM at this wavelength. The absorption along these branches is near-unity. Measurement of the hemispherical directional reflectometer (HDR) shows good agreement with simulation. The ability to control the spectral and directional emittance/absortpance profiles of surfaces has significant applications for radiation heat transfer and sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.