Extracellular regulated kinases (ERKI/II), members of the mitogen-activated protein kinase family, play a role in long-term memory and long-term potentiation (LTP). ERKI/II is required for the induction of the early phase of LTP, and we show that it is also required for the late phase of LTP in area CA1 in vitro, induced by a protocol of brief, repeated 100 Hz trains. We also show that ERKI/II is necessary for the upregulation of the proteins encoded by the immediate early genes Zif268 and Homer after the induction of LTP in the dentate gyrus by tetanic stimulation of the perforant path in vivo or by BDNF stimulation of primary cortical cultures. To test whether the induction of persistent synaptic plasticity by stimuli such as BDNF is associated with nuclear translocation of ERKI/II, we expressed enhanced green fluorescent protein (EGFP)-ERKII in PC12 cell lines and primary cortical cultures. In both preparations, we observed translocation of EGFP-ERKII from the cytoplasm to the nucleus in cells exposed to neurotrophic factors. Our results suggest that the induction of late LTP involves translocation of ERKI/II to the nucleus in which it activates the transcription of immediate early genes. The ability to visualize the cellular redistribution of ERKII after induction of long-term synaptic plasticity may provide a method for visualizing neuronal circuits underlying information storage in the brain in vivo.
Segments of nicotinic acetylcholine receptor alpha subunit genes have been isolated from a panel of insect species by polymerase chain reaction, using degenerate oligonucleotide primers designed to recognize conserved regions of the Drosophila melanogaster ALS and SAD genes. The amplified segments encode elements of typical alpha-subunits anticipated to play roles in ligand binding and ion channel formation. Each is also clearly either ALS or SAD-like. The predicted protein sequences display extremely high levels of conservation (over 85% for each subtype) even though derived from very distantly related insect species.
Recombinant DNA technology has enabled the expression of a large number of eukaryotic genes in vitro. There has been growing interest in recent years in the development of baculovirus expression vectors as an easily manipulated gene expression system. Both virus and insect cell culture are relatively easy to handle, and biologically active proteins have been produced abundantly from a variety of eukaryotic, prokaryotic and viral genes. This review describes the molecular biology of baculoviruses and some of the current applications of the baculovirus expression system in insect cells. Specific emphasis is placed on those features relevant to the use of this system in pesticide research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.