This study deals with the arbitrage problem on the financial market when the underlying asset follows a mixed fractional Brownian motion. We prove the existence and uniqueness theorem for the mixed geometric fractional Brownian motion equation. The semi-martingale approximation approach to mixed fractional Brownian motion is used to eliminate the arbitrage opportunities.
This paper focuses on a mixed fractional version of Heston model in which the volatility Brownian and price Brownian are replaced by mixed fractional Brownian motion with the Hurst parameter $H\in(\frac{3}{4},1)$ so that the model exhibits the long range dependence. The existence and uniqueness of solution of mixed fractional Heston model is established under various non-Lipschitz condition and a related Euler discretization method is discussed. An example on the American put option price using Least Squares Monte Carlo Algorithm to produce acceptable results under the mixed fractional Heston model is presented to illustrate the applicability of the theory. The numerical result obtained proves the performanceof our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.