Spatial omics data are advancing the study of tissue organization and cellular communication at an unprecedented scale. Flexible tools are required to store, integrate and visualize the large diversity of spatial omics data. Here, we present Squidpy, a Python framework that brings together tools from omics and image analysis to enable scalable description of spatial molecular data, such as transcriptome or multivariate proteins. Squidpy provides efficient infrastructure and numerous analysis methods that allow to efficiently store, manipulate and interactively visualize spatial omics data. Squidpy is extensible and can be interfaced with a variety of already existing libraries for the scalable analysis of spatial omics data.
Spatial omics data are advancing the study of tissue organization and cellular communication at an unprecedented scale. Here, we present Squidpy, a Python framework that brings together tools from omics and image analysis to enable scalable description of spatial molecular data, such as transcriptome or multivariate proteins. Squidpy provides both infrastructure and numerous analysis methods that allow to efficiently store, manipulate and interactively visualize spatial omics data.
The Xenium In Situ platform is a new spatial transcriptomics product commercialized by 10X Genomics capable of mapping hundreds of transcripts in situ at a subcellular resolution. Given the multitude of commercially available spatial transcriptomics technologies, recommendations in choice of platform and analysis guidelines are increasingly important. Herein, we explore eight preview Xenium datasets of the mouse brain and two of human breast cancer by comparing scalability, resolution, data quality, capacities and limitations with eight other spatially resolved transcriptomics technologies. In addition, we benchmarked the performance of multiple open source computational tools when applied to Xenium datasets in tasks including cell segmentation, segmentation-free analysis, selection of spatially variable genes and domain identification, among others. This study serves as the first independent analysis of the performance of Xenium, and provides best-practices and recommendations for analysis of such datasets.
The meninges of the brain are an important component of neuroinflammatory response. Diverse immune cells move from the calvaria marrow into the dura mater via recently discovered skull-meninges connections (SMCs). However, how the calvaria bone marrow is different from the other bones and whether and how it contributes to human diseases remain unknown. Using multi-omics approaches and whole mouse transparency we reveal that bone marrow cells are highly heterogeneous across the mouse body. The calvaria harbors the most distinct molecular signature with hundreds of differentially expressed genes and proteins. Acute brain injury induces skull-specific alterations including increased calvaria cell numbers. Moreover, TSPO-positron-emission-tomography imaging of stroke, multiple sclerosis and neurodegenerative disease patients demonstrate disease-associated uptake patterns in the human skull, mirroring the underlying brain inflammation. Our study indicates that the calvaria is more than a physical barrier, and its immune cells may present new ways to control brain pathologies.
Targeted spatial transcriptomics methods capture the topology of cell types and states in tissues at single cell- and subcellular resolution by measuring the expression of a predefined set of genes. The selection of an optimal set of probed genes is crucial for capturing and interpreting the spatial signals present in a tissue. However, current selections often rely on marker genes, precluding them from detecting continuous spatial signals or novel states. We present Spapros, an end-to-end probe set selection pipeline that optimizes both probe set specificity for cell type identification and within-cell-type expression variation to resolve spatially distinct populations while taking into account prior knowledge, as well as probe design and expression constraints. To facilitate data analysis and interpretation, Spapros also provides rules for cell type identification. We evaluated Spapros by selecting probes on 6 different data sets and built an evaluation pipeline with 12 quality metrics to find that Spapros outperforms other selection approaches in both cell type recovery and recovering expression variation beyond cell types. Furthermore, we used Spapros to design a SCRINSHOT experiment of adult lung tissue to demonstrate how probes selected with Spapros identify cell types of interest and detect spatial variation even within cell types. Spapros enables optimal probe set selection, probe set evaluation, and probe design, as a freely available Python package.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.