Summary
The histone acetyltransferase (HAT) p300/CBP is a transcriptional coactivator implicated in many gene regulatory pathways and protein acetylation events. While p300 inhibitors have been reported, a potent, selective, and readily available active-site directed small molecule inhibitor is not yet known. Here we use a structure-based, in silico screening approach to identify a commercially available pyrazolone-containing small molecule p300 HAT inhibitor, C646. C646 is a competitive p300 inhibitor with a Ki of 400 nM and is selective versus other acetyltransferases. Studies on site-directed p300 HAT mutants and synthetic modifications of C646 confirm the importance of predicted interactions in conferring potency. Inhibition of histone acetylation and cell growth by C646 in cells validate its utility as a pharmacologic probe and suggest that p300/CBP HAT is a worthy anti-cancer target.
Understanding the function of histone modifications across inducible genes in mammalian cells requires quantitative, comparative analysis of their fate during gene activation and identification of enzymes responsible. We produced high-resolution comparative maps of the distribution and dynamics of H3K4me3, H3K36me3, H3K79me2 and H3K9ac across c-fos and c-jun upon gene induction in murine fibroblasts. In unstimulated cells, continuous turnover of H3K9 acetylation occurs on all K4-trimethylated histone H3 tails; distribution of both modifications coincides across promoter and 5′ part of the coding region. In contrast, K36- and K79-methylated H3 tails, which are not dynamically acetylated, are restricted to the coding regions of these genes. Upon stimulation, transcription-dependent increases in H3K4 and H3K36 trimethylation are seen across coding regions, peaking at 5′ and 3′ ends, respectively. Addressing molecular mechanisms involved, we find that Huntingtin-interacting protein HYPB/Setd2 is responsible for virtually all global and transcription-dependent H3K36 trimethylation, but not H3K36-mono- or dimethylation, in these cells. These studies reveal four distinct layers of histone modification across inducible mammalian genes and show that HYPB/Setd2 is responsible for H3K36 trimethylation throughout the mouse nucleus.
The nucleosomal response refers to the rapid phosphorylation of histone H3 on serine 10 and HMG-14 on serine 6 that occurs concomitantly with immediateearly (IE) gene induction in response to a wide variety of stimuli. Using antibodies against the phosphorylated residues, we show that H3 and HMG-14 phosphorylation is mediated via different MAP kinase (MAPK) cascades, depending on the stimulus. The nucleosomal response elicited by TPA is ERK-dependent, whereas that elicited by anisomycin is p38 MAPK-dependent. In intact cells, the nucleosomal response can be selectively inhibited using the protein kinase inhibitor H89. MAPK activation and phosphorylation of transcription factors are largely unaffected by H89, whereas induction of IE genes is inhibited and its characteristics markedly altered. MSK1 is considered the most likely kinase to mediate this response because (i) it is activated by both ERK and p38 MAPKs; (ii) it is an extremely efficient kinase for HMG-14 and H3, utilizing the physiologically relevant sites; and (iii) its activity towards H3/HMG-14 is uniquely sensitive to H89 inhibition. Thus, the nucleosomal response is an invariable consequence of ERK and p38 but not JNK/SAPK activation, and MSK1 potentially provides a link to complete the circuit between cell surface and nucleosome.
The induction of immediate‐early (IE) genes, including proto‐oncogenes c‐fos and c‐jun, correlates well with a nucleosomal response, the phosphorylation of histone H3 and HMG‐14 mediated via extracellular signal regulated kinase or p38 MAP kinase cascades. Phosphorylation is targeted to a minute fraction of histone H3, which is also especially susceptible to hyperacetylation. Here, we provide direct evidence that phosphorylation and acetylation of histone H3 occur on the same histone H3 tail on nucleosomes associated with active IE gene chromatin. Chromatin immunoprecipitation (ChIP) assays were performed using antibodies that specifically recognize the doubly‐modified phosphoacetylated form of histone H3. Analysis of the associated DNA shows that histone H3 on c‐fos‐ and c‐jun‐associated nucleosomes becomes doubly‐modified, the same H3 tails becoming both phosphorylated and acetylated, only upon gene activation. This study reveals potential complications of occlusion when using site‐specific antibodies against modified histones, and shows also that phosphorylated H3 is more sensitive to trichostatin A (TSA)‐induced hyperacetylation than non‐phosphorylated H3. Because MAP kinase‐mediated gene induction is implicated in controlling diverse biological processes, histone H3 phosphoacetylation is likely to be of widespread significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.