We study experimentally the spatial distribution, settling, and interaction of sub-Kolmogorov inertial particles with homogeneous turbulence. Utilizing a zero-mean-flow air turbulence chamber, we drop size-selected solid particles and study their dynamics with particle imaging and tracking velocimetry at multiple resolutions. The carrier flow is simultaneously measured by particle image velocimetry of suspended tracers, allowing the characterization of the interplay between both the dispersed and continuous phases. The turbulence Reynolds number based on the Taylor microscale ranges from Re λ ≈ 200 -500, while the particle Stokes number based on the Kolmogorov scale varies between St η = O(1) and O(10). Clustering is confirmed to be most intense for St η ≈ 1, but it extends over larger scales for heavier particles. Individual clusters form a hierarchy of self-similar, fractal-like objects, preferentially aligned with gravity and sizes that can reach the integral scale of the turbulence. Remarkably, the settling velocity of St η ≈ 1 particles can be several times larger than the still-air terminal velocity, and the clusters can fall even faster. This is caused by downward fluid fluctuations preferentially sweeping the particles, and we propose that this mechanism is influenced by both large and small scales of the turbulence. The particle-fluid slip velocities show large variance, and both the instantaneous particle Reynolds number and drag coefficient can greatly differ from their nominal values. Finally, for sufficient loadings, the particles generally augment the small-scale fluid velocity fluctuations, which however may account for a limited fraction of the turbulent kinetic energy.
Despite the widely acknowledged significance of turbulence-driven clustering, a clear topological definition of particle cluster in turbulent dispersed multiphase flows has been lacking. Here we introduce a definition of coherent cluster based on self-similarity, and apply it to distributions of heavy particles in direct numerical simulations of homogeneous isotropic turbulence, with and without gravitational acceleration. Clusters show self-similarity already at length scales larger than twice the Kolmogorov length, as indicated by the fractal nature of their surface and by the power-law decay of their size distribution. The size of the identified clusters extends to the integral scale, with average concentrations that depend on the Stokes number but not on the cluster dimension. Compared to non-clustered particles, coherent clusters show a stronger tendency to sample regions of high strain and low vorticity. Moreover, we find that the clusters align themselves with the local vorticity vector. In the presence of gravity, they tend to align themselves vertically and their fall speed is significantly different from the average settling velocity: for moderate fall speeds they experience stronger settling enhancement than non-clustered particles, while for large fall speeds they exhibit weakly reduced settling. The proposed approach for cluster identification leverages the Voronoï diagram method, but is also compatible with other tessellation techniques such as the classic box-counting method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.