Mid-infrared fiber sources, emitting between 2.5 µm and 5.0 µm, are interesting for their great potential in several application fields such as material processing, biomedicine, remote sensing and infrared countermeasures due to their high-power, their diffraction-limited beam quality as well as their robust monolithic architecture. In this review, we will focus on the recent progress in continuous wave and pulsed mid-infrared fiber lasers and the components that bring these laser sources closer to a field deployment as well as in industrial systems. Accordingly, we will briefly illustrate the potential of such mid-infrared fiber lasers through a few selected applications.
We report on an ytterbium-free, erbium-doped single-mode all-fiber laser reaching a record output power of 107 W at 1598 nm, with a slope efficiency of 38.6% according to the absorbed pump power at 981 nm. The erbium-doped gain fiber, co-doped with cerium, aluminum, and phosphorus, was fabricated in-house with adjusted doping concentrations to reduce erbium ions clustering, thereby increasing efficiency while keeping the numerical aperture low to ensure a single-mode laser operation. The addition of cerium co-dopant in the core glass of an erbium system is used for the first time, to the best of our knowledge, in order to adjust the fiber’s numerical aperture without increasing the erbium concentration. Numerical modeling, validated by the experimental results, demonstrates that adding aluminum and phosphorus at high concentration mitigates erbium ions clustering, with an estimated erbium paired ions of only 5.0% in the reported gain fiber.
We report the highest power achieved to our knowledge for an ytterbium-free alumino-phosphosilicate co-doped erbium fiber laser with 51W of output power. We will also discuss on the 100W-level power scaling potential of such laser.
We report a tunable all-fiber laser emitting a maximum output power of 2.55 W around 3240 nm. The fiber laser cavity based on a fluoride fiber doped with dysprosium ions yields an efficiency of 42% according to the in-band launched pump power at 2825 nm. Due to a custom piezoelectric fiber Bragg grating (FBG) package, mechanical strains applied to the narrowband FBG used as the input cavity coupler allowed for fast tuning of the emission wavelength over a spectral range of 1.5 nm. This laser was deployed in the field in northern Québec (Canada) to assess its performances for remote sensing of methane in the presence of a significant amount of water vapor, i.e., over a hydroelectric reservoir. The preliminary results acquired during this field campaign confirm the great potential of the proposed approach for the development of a real-time active imaging system of greenhouse gases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.