BackgroundNumerous cellular differentiation processes can be captured using discrete qualitative models of biological regulatory networks. These models describe the temporal evolution of the state of the network subject to different competing transitions, potentially leading the system to different attractors. This paper focusses on the formal identification of states and transitions that are crucial for preserving or pre-empting the reachability of a given behaviour.MethodsIn the context of non-deterministic automata networks, we propose a static identification of so-called bifurcations, i.e., transitions after which a given goal is no longer reachable. Such transitions are naturally good candidates for controlling the occurrence of the goal, notably by modulating their propensity. Our method combines Answer-Set Programming with static analysis of reachability properties to provide an under-approximation of all the existing bifurcations.ResultsWe illustrate our discrete bifurcation analysis on several models of biological systems, for which we identify transitions which impact the reachability of given long-term behaviour. In particular, we apply our implementation on a regulatory network among hundreds of biological species, supporting the scalability of our approach.ConclusionsOur method allows a formal and scalable identification of transitions which are responsible for the lost of capability to reach a given state. It can be applied to any asynchronous automata networks, which encompass Boolean and multi-valued models. An implementation is provided as part of the Pint software, available at http://loicpauleve.name/pint.Electronic supplementary materialThe online version of this article (doi:10.1186/s13015-017-0110-3) contains supplementary material, which is available to authorized users.
International audienceIn this work we propose an automatic way of generating and verifying formal hybrid models of signaling and transcriptional events, gathered in large-scale regulatory networks.This is done by integrating temporal and stochastic aspects of the expression of some biological components. The hybrid approach lies in the fact that measurements take into account both times of lengthening phases and discrete switches between them. The model proposed is based on a real case study of keratinocytes differentiation, in which gene time-series data was generated upon Calcium stimulation. To achieve this we rely on the Process Hitting (PH) formalism that was designed to consider large-scale system analysis. We first propose an automatic way of detecting and translating biological motifs from the Pathway Interaction Database to the PH formalism. Then, we propose a way of estimating temporal and stochas-tic parameters from time-series expression data of action on the PH. Simulations emphasize the interest of synchronizing concurrent events
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.